【題目】已知函數f(x)=|x+1|. (I)求不等式f(x)<|2x+1|﹣1的解集M;
(Ⅱ)設a,b∈M,證明:f(ab)>f(a)﹣f(﹣b).
【答案】解:(I)不等式f(x)<|2x+1|﹣1,即|x+1|<|2x+1|﹣1, ∴
①,或
②,或
③.
解①求得x<﹣1;解②求得x∈;解③求得x>1.
故要求的不等式的解集M={x|x<﹣1或 x>1}.
(Ⅱ)證明:設a,b∈M,∴|a+1|>0,|b|﹣1>0,
則 f(ab)=|ab+1|,f(a)﹣f(﹣b)=|a+1|﹣|﹣b+1|.
∴f(ab)﹣[f(a)﹣f(﹣b)]=f(ab)+f(﹣b)﹣f(a)=|ab+1|+|1﹣b|﹣|a+1|
=|ab+1|+|b﹣1|﹣|a+1|≥|ab+1+b﹣1|﹣|a+1|=|b(a+1)|﹣|a+1|
=|b||a+1|﹣|a+1|=|a+1|(|b|﹣1|)>0,
故f(ab)>f(a)﹣f(﹣b)成立
【解析】(I)把要解的不等式等價轉化為與之等價的三個不等式組,求出每個不等式組的解集,再取并集,即得所求.(Ⅱ)由題意可得|a+1|>0,|b|﹣1>0,化簡f(ab)﹣[f(a)﹣f(﹣b)]為|a+1|(|b|﹣1|)>0,從而證得不等式成立.
【考點精析】解答此題的關鍵在于理解絕對值不等式的解法的相關知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號.
科目:高中數學 來源: 題型:
【題目】已知長方形ABCD如圖1中,AD=
,AB=2,E為AB中點,將△ADE沿DE折起到△PDE,所得四棱錐P﹣BCDE如圖2所示.![]()
(Ⅰ)若點M為PC中點,求證:BM∥平面PDE;
(Ⅱ)當平面PDE⊥平面BCDE時,求三棱錐E﹣PCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與BC1所成角的余弦值為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,
.
(Ⅰ)若
,解不等式
;
(Ⅱ)設
是函數
的四個不同的零點,問是否存在實數
,使得其中三個零點成等差數列?若存在,求出所有
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平行六面體ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=
,∠BAD=120°.
(Ⅰ)求異面直線A1B與AC1所成角的余弦值;
(Ⅱ)求二面角B﹣A1D﹣A的正弦值.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com