【題目】在四棱錐
中,平面
平面
,
為等邊三角形,
,
,
,點
是
的中點.
![]()
(1)求證:
平面
;
(2)求二面角
的余弦值.
【答案】(1)證明見解析(2)![]()
【解析】
(1)取
中點
,連結(jié)
,
,證明四邊形
為平行四邊形得到答案.
(2)證明
平面
,如圖建立空間直角坐標(biāo)系,平面
的法向量
,面
的法向量
,計算夾角得到答案.
(1)取
中點
,連結(jié)
,
.
因為
為
中點,所以
,
.
因為
,
.所以
且
.
所以四邊形
為平行四邊形,所以
.
因為
平面
,
平面
,
所以
平面
.
![]()
(2)取
中點
,連結(jié)
.因為
,所以
.
因為平面
平面
,平面
平面
,
平面
,
所以
平面
,取
中點
,連結(jié)
,
則
.以
為原點,如圖建立空間直角坐標(biāo)系,
由
,則
,
,
,
,
,
,
.平面
的法向量
,
設(shè)平面
的法向量
,由
,得
.
令
,則
,
.由圖可知,
二面角
是銳二面角,所以二面角
的余弦值為
.
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】推進(jìn)垃圾分類處理,是落實綠色發(fā)展理念的必然選擇,也是打贏污染防治攻堅戰(zhàn)的重要環(huán)節(jié).為了解居民對垃圾分類的了解程度某社區(qū)居委會隨機抽取1000名社區(qū)居民參與問卷測試,并將問卷得分繪制頻率分布表如表:
得分 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
男性人數(shù) | 40 | 90 | 120 | 130 | 110 | 60 | 30 |
女性人數(shù) | 20 | 50 | 80 | 110 | 100 | 40 | 20 |
(1)從該社區(qū)隨機抽取一名居民參與問卷測試試估計其得分不低于60分的概率:
(2)將居民對垃圾分類的了解程度分為“比較了解”(得分不低于60分)和“不太了解”(得分低于60)兩類,完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為“居民對垃圾分類的了解程度”與“性別”有關(guān)?
不太了解 | 比較了解 | 合計 | |
男性 | |||
女性 | |||
合計 |
(3)從參與問卷測試且得分不低于80分的居民中,按照性別進(jìn)行分層抽樣,共抽取10人,現(xiàn)從這10人中隨機抽取3人作為環(huán)保宣傳隊長,設(shè)3人中男性隊長的人數(shù)為
,求
的分布列和期望.
附:
.
臨界值表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)
,若存在區(qū)間
,使得
,則稱函數(shù)
為“可等域函數(shù)”,區(qū)間A為函數(shù)的一個“可等域區(qū)間”.給出下列四個函數(shù):①
;②
;③
;④
.其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”的個數(shù)是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知ABCD為梯形,AB∥CD,CD=2AB,M為線段PC上一點.
![]()
(1)設(shè)平面PAB∩平面PDC=l,證明:AB∥l;
(2)在棱PC上是否存在點M,使得PA∥平面MBD,若存在,請確定點M的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形周長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)直線
與橢圓
交于
,
兩點,且以
為直徑的圓過橢圓的右頂點
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市堅持農(nóng)業(yè)與旅游融合發(fā)展,著力做好旅游各要素,完善旅游業(yè)態(tài),提升旅游接待能力.為了給游客提供更好的服務(wù),旅游部門需要了解游客人數(shù)的變化規(guī)律,收集并整理了
年
月至
年
月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )
![]()
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,指數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有( )
A.12種B.24種C.36種D.48種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的定義域為
,若存在區(qū)間
使得
:
(Ⅰ)
在
上是單調(diào)函數(shù);
(Ⅱ)
在
上的值域是
,
則稱區(qū)間
為函數(shù)
的“倍值區(qū)間”.
下列函數(shù)中存在“倍值區(qū)間”的有______________(填上所有你認(rèn)為正確的序號)
①
; ②
;
③
; ④
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com