【題目】已知數(shù)列
的前
項(xiàng)和為
,且2,
,
成等差數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式;
(2)若
,求數(shù)列
的前
項(xiàng)和
;
(3)對(duì)于(2)中的
,設(shè)
,求數(shù)列
中的最大項(xiàng).
【答案】(1)
;(2)
;(3)
.
【解析】
(1)由
成等差數(shù)列,得
,利用
和
的關(guān)系,化簡(jiǎn)得
,進(jìn)而得到數(shù)列
是以2為首項(xiàng),2為公比的等比數(shù)列,即可求解其通項(xiàng)公式;
(2)由(1)可得
,利用乘公比錯(cuò)位相減法,即可求的
;
(3)由(1)(2)可得
,設(shè)數(shù)列
的第n項(xiàng)最大,列出不等式組,即可求解實(shí)數(shù)n的范圍,得到答案.
(1)由題意知
成等差數(shù)列,所以
, ①
可得
, ②
①-②得
,所以
,
又
,
,
所以數(shù)列
是以2為首項(xiàng),2為公比的等比數(shù)列,所以
.
(2)由(1)可得
,
用錯(cuò)位相減法得:
,、
, ②
①-②可得
.
(3)由(1)(2)可得
,
設(shè)數(shù)列
的第n項(xiàng)最大,則
,可得
,
解得
.
所以
或
時(shí),
最大,即
為
中的最大項(xiàng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
![]()
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的方程為
,
為橢圓C的左右焦點(diǎn),離心率為
,短軸長(zhǎng)為2。
![]()
(1)求橢圓C的方程;
(2)如圖,橢圓C的內(nèi)接平行四邊形ABCD的一組對(duì)邊分別過(guò)橢圓的焦點(diǎn)
,求該平行四邊形ABCD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的多面體中,四邊形ABCD為菱形,
,
,
面ABCD,
,
,異面直線AF,CD所成角的余弦值為
.
![]()
Ⅰ
求證:面
面EDB;
Ⅱ
求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)有個(gè)名句“運(yùn)籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌.古代是用算籌來(lái)進(jìn)行計(jì)算,算籌是將幾寸長(zhǎng)的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,(如圖所示),表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個(gè)位、百位、萬(wàn)位數(shù)用縱式表示,十位、千位、十萬(wàn)位用橫式表示,以此類推.例如8455用算籌表示就是
,則以下用算籌表示的四位數(shù)正確的為( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:x+2y-2=0.
(1)求直線l1:y=x-2關(guān)于直線l對(duì)稱的直線l2的方程;
(2)求直線l關(guān)于點(diǎn)A(1,1)對(duì)稱的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)求
的最大值和最小值;
(2)若關(guān)于x的方程
在
上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,直線l:
.
求
的單調(diào)增區(qū)間;
求證:對(duì)于任意
,直線l都不是線
的切線;
試確定曲線
與直線l的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)證明:當(dāng)
時(shí),
恒成立;
(2)若函數(shù)
在
上只有一個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com