【題目】已知指數(shù)函數(shù)
滿足:
,定義域?yàn)?/span>
的函數(shù)
是奇函數(shù).
(1)求
的值;
(2)判斷函數(shù)
的單調(diào)性并用定義加以證明;
(3)若對(duì)任意的
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【答案】(1)
,
;(2)見解析;(3)![]()
【解析】
(1)依題意設(shè)
(
或
),由
可求出
值,再根據(jù)奇函數(shù)的定義可得,
,
,即可求出
;
(2) 按照單調(diào)性定義證明的步驟,取值-作差-變形-定號(hào)-下結(jié)論,即可證出;
(3)根據(jù)函數(shù)
的奇偶性和單調(diào)性,即可將
轉(zhuǎn)化為
,再利用分離參數(shù)法將
分離,轉(zhuǎn)化去求
在
上的最小值,即可求出
的取值范圍.
(1)依題意設(shè)
(
或
),由
得,
,解得
,
所以
,
.
是R上的奇函數(shù),
, 即
,所以
,
又
,即
,解得
,檢驗(yàn)符合題意.
,
![]()
是R上的減函數(shù).理由如下:
![]()
設(shè)
,則
![]()
![]()
,
,所以
,即
.
故
是R上的減函數(shù).
(3) ![]()
,
是R上的奇函數(shù),
,
是R上的減函數(shù),
,因?yàn)?/span>
,
,對(duì)任意的
恒成立,因?yàn)?/span>
當(dāng)且僅當(dāng)
時(shí)卻等號(hào),∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率
,頂點(diǎn)
到直線
的距離為
,橢圓
內(nèi)接四邊形
(點(diǎn)
在橢圓上)的對(duì)角線
相交于點(diǎn)
,且
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分別是AD,BE的中點(diǎn),將三角形ADE沿AE折起,則下列說(shuō)法正確的是________(填序號(hào)).
![]()
①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MN⊥AE;③不論D折至何位置(不在平面ABC內(nèi)),都有MN∥AB;④在折起過(guò)程中,一定存在某個(gè)位置,使EC⊥AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知曲線
的參數(shù)方程為
,(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù),
為實(shí)數(shù)),直線
與曲線
交于
兩點(diǎn).
(1)若
,求
的長(zhǎng)度;
(2)當(dāng)
面積取得最大值時(shí)(
為原點(diǎn)),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汕頭某家電企業(yè)要將剛剛生產(chǎn)的100臺(tái)變頻空調(diào)送往市內(nèi)某商場(chǎng),現(xiàn)有4輛甲型貨車和8輛乙型貨車可供調(diào)配,每輛甲型貨車的運(yùn)輸費(fèi)用是400元,可裝空調(diào)20臺(tái),每輛乙型貨車的運(yùn)輸費(fèi)用是300元,可裝空調(diào)10臺(tái),若每輛車至多運(yùn)一次,則企業(yè)所花的最少運(yùn)費(fèi)為( )
A. 2000元B. 2200元C. 2400元D. 2800元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,(
為常數(shù)),
.曲線
在點(diǎn)
處的切線與
軸平行
(1)求
的值;
(2)求
的單調(diào)區(qū)間和最小值;
(3)若
對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若
展開式中前三項(xiàng)系數(shù)成等差數(shù)列,求:
(1)展開式中含x的一次冪的項(xiàng);
(2)展開式中所有x 的有理項(xiàng);
(3)展開式中系數(shù)最大的項(xiàng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型超市在2018年元旦舉辦了一次抽獎(jiǎng)活動(dòng),抽獎(jiǎng)箱里放有2個(gè)紅球,1個(gè)黃球和1個(gè)藍(lán)球(這些小球除顏色外大小形狀完全相同),從中隨機(jī)一次性取2個(gè)小球,每位顧客每次抽完獎(jiǎng)后將球放回抽獎(jiǎng)箱.活動(dòng)另附說(shuō)明如下:
①凡購(gòu)物滿100(含100)元者,憑購(gòu)物打印憑條可獲得一次抽獎(jiǎng)機(jī)會(huì);
②凡購(gòu)物滿188(含188)元者,憑購(gòu)物打印憑條可獲得兩次抽獎(jiǎng)機(jī)會(huì);
③若取得的2個(gè)小球都是紅球,則該顧客中得一等獎(jiǎng),獎(jiǎng)金是一個(gè)10元的紅包;
④若取得的2個(gè)小球都不是紅球,則該顧客中得二等獎(jiǎng),獎(jiǎng)金是一個(gè)5元的紅包;
⑤若取得的2個(gè)小球只有1個(gè)紅球,則該顧客中得三等獎(jiǎng),獎(jiǎng)金是一個(gè)2元的紅包.
抽獎(jiǎng)活動(dòng)的組織者記錄了該超市前20位顧客的購(gòu)物消費(fèi)數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.
![]()
(1)求這20位顧客中獲得抽獎(jiǎng)機(jī)會(huì)的人數(shù)與抽獎(jiǎng)總次數(shù)(假定每位獲得抽獎(jiǎng)機(jī)會(huì)的顧客都會(huì)去抽獎(jiǎng));
(2)求這20位顧客中獎(jiǎng)得抽獎(jiǎng)機(jī)會(huì)的顧客的購(gòu)物消費(fèi)數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);
(3)分別求在一次抽獎(jiǎng)中獲得紅包獎(jiǎng)金10元,5元,2元的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com