【題目】已知圓C的圓心在x軸上,且經過點
.
(1)求圓C的方程;
(2)若點
,直線l平行于OQ(O為坐標原點)且與圓C相交于M,N兩點,直線QM、QN的斜率分別為kQM、kQN,求證:kQM+kQN為定值.
科目:高中數學 來源: 題型:
【題目】
某學校高一數學興趣小組對學生每周平均體育鍛煉小時數與體育成績優(yōu)秀(體育成績滿分100分,不低于85分稱優(yōu)秀)人數之間的關系進行分析研究,他們從本校初二,初三,高一,高二,高三年級各隨機抽取了40名學生,記錄并整理了這些學生周平均體育鍛煉小時數與體育成績優(yōu)秀人數,得到如下數據表:
初二 | 初三 | 高一 | 高二 | 高三 | |
周平均體育鍛煉小時數工(單位:小時) | 14 | 11 | 13 | 12 | 9 |
體育成績優(yōu)秀人數y(單位:人) | 35 | 26 | 32 | 26 | 19 |
該興趣小組確定的研究方案是:先從這5組數據中選取3組數據求線性回歸方程,再用剩下的2組數據進行檢驗.
(1)若選取的是初三,高一,高二的3組數據,請根據這3組數據,求出y關于x的線性回歸方程
;
(2)若由線性回歸方程得到的估計數據與所選取的檢驗數據的誤差均不超過1,則認為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?
參考數據:
,
.
參考公式:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:
空調類 | 冰箱類 | 小家電類 | 其它類 | |
營業(yè)收入占比 |
|
|
|
|
凈利潤占比 |
|
|
|
|
則下列判斷中不正確的是( )
A. 該公司2018年度冰箱類電器營銷虧損
B. 該公司2018年度小家電類電器營業(yè)收入和凈利潤相同
C. 該公司2018年度凈利潤主要由空調類電器銷售提供
D. 剔除冰箱類電器銷售數據后,該公司2018年度空調類電器銷售凈利潤占比將會降低
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,棱長為
的正方形
中,點
,
分別是邊
,
上的點,且
,將
,
沿
,
折起,使得
,
兩點重合于
點上,設
與
交于
點,過點
作
于
點.
![]()
![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
經過點
,過
作兩條不同直線
,其中直線
關于直線
對稱.
(Ⅰ)求拋物線
的方程及準線方程;
(Ⅱ)設直線
分別交拋物線
于
兩點(均不與
重合),若以線段
為直徑的圓與拋物線
的準線相切,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面ABCD⊥平面CDEF,且四邊形ABCD是梯形,四邊形CDEF是矩形,
,M是線段DE上的點,滿足DM=2ME.
![]()
(1)證明:BE//平面MAC;
(2)求直線BF與平面MAC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系
中,直線
的參數方程為
(
為參數),圓
的方程為
.以原點
為極點,
軸正半軸為極軸建立極坐標系.
(Ⅰ)求直線
及圓
的極坐標方程;
(Ⅱ)若直線
與圓
交于
兩點,求
的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com