【題目】若定義在R上的函數
對任意的
、
,都有
成立,且當
時,
.
(1)求證:
是R上的增函數;
(2)若
,解不等式
.
【答案】(1)證明見解析;(2) ![]()
【解析】
(1)要判斷函數的增減性,就是在自變量范圍中任意取兩個x1<x2∈R,判斷出f(x1)與f(x2)的大小即可知道增減性.
(2)已知f(x1+x2)=f(x1)+f(x2)﹣1,且f(4)=5,則f(4)=f(2)+f(2)﹣1f(2)=3.由不等式f(3
m﹣2)<3,得f(3
m﹣2)<f(2),由(1)知,f(x)是R上的增函數,得到3
m﹣2<2,求出解集即可.
(1) 任取x1,x2∈R,且x1<x2,則x2﹣x1>0,f(x2﹣x1)>1,
∵f(x1+x2)=f(x1)+f(x2)﹣1,
∴f(x2)﹣f(x1)=f(x2﹣x1+ x1)﹣f(x1)
=f(x2﹣x1)+f(x1)﹣1﹣f(x1)=f(x2﹣x1)﹣1>0,
∴f(x1)<f(x2),
∴f(x)是R上的增函數.
(2)∵f(x1+x2)=f(x1)+f(x2)﹣1,且f(4)=5,
∴f(4)=f(2)+f(2)﹣1f(2)=3.
由不等式f(3
m﹣2)<3,得f(3
m﹣2)<f(2),
由(1)知,f(x)是R上的增函數,
∴3
m﹣2<2,∴3
m﹣4<0,∴﹣1<m
,
∴不等式f(3
m﹣2)<3的解集為(﹣1,
).
因此,不等式
的解集為![]()
科目:高中數學 來源: 題型:
【題目】已知在直角坐標系xOy中,曲線C的參數方程為
(θ為參數),直線l經過定點P(3,5),傾斜角為
.
(1)寫出直線l的參數方程和曲線C的標準方程.
(2)設直線l與曲線C相交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知x∈(1,+∞),函數f(x)=ex+2ax(a∈R),函數g(x)=|
﹣lnx|+lnx,其中e為自然對數的底數.
(1)若a=﹣
,求函數f(x)的單調區間;
(2)證明:當a∈(2,+∞)時,f′(x﹣1)>g(x)+a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在P地正西方向8km的A處和正東方向1km的B處各有一條正北方向的公路AC和BD,現計劃在AC和BD路邊各修建一個物流中心E和F,為緩解交通壓力,決定修建兩條互相垂直的公路PE和PF,設∠EPA=α(0<α<
). ![]()
(1)為減少對周邊區域的影響,試確定E,F的位置,使△PAE與△PFB的面積之和最小;
(2)為節省建設成本,試確定E,F的位置,使PE+PF的值最。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方形ABCD的中心為O,四邊形OBEF為矩形,平面OBEF⊥平面ABCD,點G為AB的中點,AB=BE=2. ![]()
(1)求證:EG∥平面ADF;
(2)求二面角O﹣EF﹣C的正弦值;
(3)設H為線段AF上的點,且AH=
HF,求直線BH和平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥BD,底面ABCD是邊長為a的菱形,∠BAD=120°,PA=b,AC與BD交于點O,M為OC的中點. ![]()
(1)求證:平面PAC⊥平面ABCD;
(2)若∠PAC=90°,二面角O﹣PM﹣D的正切值為
,求a:b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年空氣質量逐步惡化,霧霾天氣現象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫院隨機對入院的50人進行問卷調查,得到了如下的列聯表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(Ⅰ)用分層抽樣的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(Ⅱ)在上述抽取的6人中選2人,求恰好有1名女性的概率;
(Ⅲ)為了研究心肺疾病是否與性別有關,請計算出統計量
,你有多大把握認為心肺疾病與性別有關?(結果保留三個有效數字)
下面的臨界值表供參考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024/p> | 6.635 | 7.879 | 10.828 |
參考公式:
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩運動員進行射擊訓練,已知他們擊中的環數都穩定在7,8,9,10環,且每次射擊成績互不影響.射擊環數的頻率分布條形圖如下:
![]()
若將頻率視為概率,回答下列問題:
(1)求甲運動員在3次射擊中至少有1次擊中9環以上(含9環)的概率;
(2)若甲、乙兩運動員各自射擊1次,
表示這2次射擊中擊中9環以上(含9環)的次數,求
的分布列及期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】要得到函數f(x)=2sinxcosx,x∈R的圖象,只需將函數g(x)=2cos2x﹣1,x∈R的圖象( )
A.向左平移
個單位
B.向右平移
個單位
C.向左平移
個單位
D.向右平移
個單位
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com