【題目】已知在△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,且a2=b(b+c).
(1)求證:∠A=2∠B;
(2)若a=
b,判斷△ABC的形狀.
【答案】
(1)證明:a2=b(b+c),
即BC2=AC(AC+AB),
延長CA至D,使AD=AB,連接DB.
則∠BAC=2∠D.
∴BC2=ACCD,
,
又∠C=∠C,
∴△BCA∽△DCB,故∠D=∠ABC.
∴∠BAC=2∠ABC
(2)解:∵a=
b,
∴a2=3b2,
又a2=b(b+c),
∴3b2=b2+bc,c=2b.
∴a2+b2=4b2,
c2=(2b)2=4b2.
即a2+b2=c2.
△ABC為直角三角形
【解析】(1)延長CA至D,使AD=AB,連接DB.根據a2=b(b+c)得到△BCA∽△DCB,然后由三角形中角的關系得答案;(2)由a=
b結合a2=b(b+c)得到a2+b2=c2 , 說明△ABC為直角三角形.
科目:高中數學 來源: 題型:
【題目】海中一小島
的周圍
內有暗礁,海輪由西向東航行至
處測得小島
位于北偏東
,航行8
后,于
處測得小島
在北偏東
(如圖所示).
![]()
(1)如果這艘海輪不改變航向,有沒有觸礁的危險?請說明理由.
(2)如果有觸礁的危險,這艘海輪在
處改變航向為東偏南
(
)方向航行,求
的最小值.
附: ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax+xlnx(a∈R)
(1)若函數f(x)在區間[e,+∞)上為增函數,求a的取值范圍;
(2)當a=1且k∈Z時,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量
=(cosα﹣
,﹣1),
=(sinα,1),
與
為共線向量,且α∈[﹣
,0].
(1)求sinα+cosα的值;
(2)求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系
中,直線
的參數方程為
(
為參數)
以
為極點,
軸為正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,若直線
與曲線
交于
,
兩點。
(Ⅰ)若
,求
;
(Ⅱ)若點
是曲線
上不同于
,
的動點,求
面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第n年需要付出設備的維修和工人工資等費用an的信息如圖. ![]()
(1)求an;
(2)引進這種設備后,第幾年后該公司開始獲利;
(3)這種設備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過定點P(2,0)的直線l與曲線y=
相交于A,B兩點,O為坐標原點,當△AOB的面積取最大時,直線的傾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正確答案的序號是 . (寫出所有正確答案的序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com