【題目】已知橢圓:
(a>b>0)過點E(
,1),其左、右頂點分別為A,B,左、右焦點為F1,F2,其中F1(
,0).
(1)求橢圓C的方程:
(2)設M(x0,y0)為橢圓C上異于A,B兩點的任意一點,MN⊥AB于點N,直線l:x0x+2y0y﹣4=0,設過點A與x軸垂直的直線與直線l交于點P,證明:直線BP經過線段MN的中點.
【答案】(1)
;(2)證明詳見解析.
【解析】
(1)根據橢圓上一點到兩焦點的距離之和為2a,可求出a,已知焦點坐標,可知c,可求方程.
(2)根據題意求出ABP的坐標,求PB直線方程,求出點N坐標,求出其中點,可代入判斷在直線PB上.
(1)由題意知,2a=|EF1|+|EF2|
4,
則a=2,c
,b
,
故橢圓的方程為
,
(2)由(1)知A(﹣2,0),B(2,0),
過點A且與x軸垂直的直線的方程為x=﹣2,
結合方程x0x+2y0y﹣4=0,得點P(﹣2,
),
直線PB的斜率為
,
直線PB的方程為
,
因為MN⊥AB于點N,所以N(x0,0),線段MN的中點坐標(
),
令x=x0,得
,
因為
,所以
,
即直線BP經過線段MN的中點.
科目:高中數學 來源: 題型:
【題目】某中學為研究學生的身體素質與體育鍛煉時間的關系,對該校200名高三學生平均每天體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間/分鐘 |
|
|
|
|
|
|
總人數 | 20 | 36 | 44 | 50 | 40 | 10 |
將學生日均體育鍛煉時間在
的學生評價為“鍛煉達標”.
(1)請根據上述表格中的統計數據填寫下面
列聯表;
鍛煉不達標 | 鍛煉達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認為“鍛煉達標”與性別有關?
(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出5人,進行體育鍛煉體會交流,從參加體會交流的5人中,隨機選出2人作重點發言,求恰好選出一名男生的概率.
參考公式:
,其中![]()
臨界值表
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐
中,
,
分別是線段
,
的中點,底面
是正三角形,延長
到點
,使得
.
![]()
(1)
為線段
上確定一點,當
平面
時,求
的值;
(2)當
平面
,且
時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點F為橢圓
(a>b>0)的一個焦點,點A為橢圓的右頂點,點B為橢圓的下頂點,橢圓上任意一點到點F距離的最大值為3,最小值為1.
(1)求橢圓的標準方程;
(2)若M、N在橢圓上但不在坐標軸上,且直線AM∥直線BN,直線AN、BM的斜率分別為k1和k2,求證:k1k2=e2﹣1(e為橢圓的離心率).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國著名數學家華羅庚先生曾說:數缺形時少直觀,形缺數時難入微,數形結合百般好,隔裂分家萬事休.在數學的學習和研究中,常用函數的圖象研究函數的性質,也常用函數的解析式來琢磨函數的圖象特征.如函數
的圖象大致為( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為
(θ為參數),以原點為極點,x軸非負半軸為極軸,建立極坐標系,曲線C2的極坐標方程為
.
(1)求曲線C1的極坐標方程以及曲線C2的直角坐標方程;
(2)若直線l:y=kx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ|=|PQ|,點M的直角坐標為(1,0),求△PMQ的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系
中,橢圓
:
過點
,且橢圓的離心率為
,直線
:
與橢圓
相交于
、
兩點,線段
的中垂線交橢圓
于
、
兩點.
![]()
(1)求橢圓
的標準方程;
(2)求線段
長的最大值;
(3)求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com