【題目】對(duì)于集合
,
,
,
,定義
.集合
中的元素個(gè)數(shù)記為
.規(guī)定:若集合
滿足
,則稱集合具
有性質(zhì)
.
(1)已知集合
,
,寫(xiě)出
,
的值;
(2)已知集合
,其中
,證明:
有性質(zhì)
;
(3)已知集合
,
有性質(zhì)
,且
求
的最小值.
【答案】(1) ![]()
(2)證明過(guò)程見(jiàn)解析; (3)
.
【解析】
(1)利用定義,通過(guò)計(jì)算可以求出
,
的值;
(2)可以知道集合
中的元素組成首項(xiàng)為
,公比為
的等比數(shù)列,只要證明這個(gè)等比數(shù)列中的任意兩項(xiàng)(包括本身與本身)的和不在這個(gè)數(shù)列中即可.
(3) 根據(jù)
,
有性質(zhì)了
,可以知道集合中元素的性質(zhì),這樣可以求出
的最小值.
(1) 根據(jù)定義可得:
,
.
所以![]()
![]()
(2) 數(shù)列
的通項(xiàng)公式為:
.
若存在
成立,則
,因此有
,即有
.
等式的左邊是2的倍數(shù),右邊是3的倍數(shù),故等式不成立,因此等比數(shù)列中的任意兩項(xiàng)(包括本身與本身)的和不在這個(gè)數(shù)列中
所以
中的元素的個(gè)數(shù)為:
,即
,所以
有性質(zhì)
;
(3) 集合
具有性質(zhì)
,所以集合
中的任意兩個(gè)元素的和都不在該集合中,也就是集合
中的任意兩個(gè)元素的和都不相等,對(duì)于任意的
有
,也就是任意兩個(gè)元素的差的絕對(duì)值不相等.
設(shè)
,所以
集合
具有性質(zhì)
,
集合
,
有性質(zhì)
,且![]()
(當(dāng)且僅當(dāng)
時(shí),取等號(hào)).
所以
的最小值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直三棱柱ABCA1B1C1中,側(cè)面BCC1B1為正方形,A1B1⊥B1C1.設(shè)A1C與AC1交于點(diǎn)D,B1C與BC1交于點(diǎn)E.
![]()
求證:(1)DE∥平面ABB1A1;
(2)BC1⊥平面A1B1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游戲公司對(duì)今年新開(kāi)發(fā)的一些游戲進(jìn)行評(píng)測(cè),為了了解玩家對(duì)游戲的體驗(yàn)感,研究人員隨機(jī)調(diào)查了300名玩家,對(duì)他們的游戲體驗(yàn)感進(jìn)行測(cè)評(píng),并將所得數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中
.
![]()
(1)求這300名玩家測(cè)評(píng)分?jǐn)?shù)的平均數(shù);
(2)由于該公司近年來(lái)生產(chǎn)的游戲體驗(yàn)感較差,公司計(jì)劃聘請(qǐng)3位游戲?qū)<覍?duì)游戲進(jìn)行初測(cè),如果3人中有2人或3人認(rèn)為游戲需要改進(jìn),則公司將回收該款游戲進(jìn)行改進(jìn);若3人中僅1人認(rèn)為游戲需要改進(jìn),則公司將另外聘請(qǐng)2位專家二測(cè),二測(cè)時(shí),2人中至少有1人認(rèn)為游戲需要改進(jìn)的話,公司則將對(duì)該款游戲進(jìn)行回收改進(jìn).已知該公司每款游戲被每位專家認(rèn)為需要改進(jìn)的概率為
,且每款游戲之間改進(jìn)與否相互獨(dú)立.
(i)對(duì)該公司的任意一款游戲進(jìn)行檢測(cè),求該款游戲需要改進(jìn)的概率;
(ii)每款游戲聘請(qǐng)專家測(cè)試的費(fèi)用均為300元/人,今年所有游戲的研發(fā)總費(fèi)用為50萬(wàn)元,現(xiàn)對(duì)該公司今年研發(fā)的600款游戲都進(jìn)行檢測(cè),假設(shè)公司的預(yù)算為110萬(wàn)元,判斷這600款游戲所需的最高費(fèi)用是否超過(guò)預(yù)算,并通過(guò)計(jì)算說(shuō)明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐
中,底面
是邊長(zhǎng)為
的菱形,
,
是等邊三角形,
為
的中點(diǎn),
.
![]()
(1)求證:
;
(2)若
在線段
上,且
,能否在棱
上找到一點(diǎn)
,使平面
平面
?若存在,求四面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)當(dāng)
時(shí),求不等式
的解集;
(2)已知
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C:
就是其中之一(如圖).給出下列三個(gè)結(jié)論:
![]()
①曲線C恰好經(jīng)過(guò)6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));
②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過(guò)
;
③曲線C所圍成的“心形”區(qū)域的面積小于3.
其中,所有正確結(jié)論的序號(hào)是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的
倍,為了更好地對(duì)比該校考生的升學(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:
![]()
則下列結(jié)論正確的是
![]()
A. 與2015年相比,2018年一本達(dá)線人數(shù)減少
B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了
倍
C. 2015年與2018年藝體達(dá)線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
年齡x | 28 | 32 | 38 | 42 | 48 | 52 | 58 | 62 |
收縮壓 | 114 | 118 | 122 | 127 | 129 | 135 | 140 | 147 |
其中:
,
,![]()
![]()
請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
;
的值精確到![]()
若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的
倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的
倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的
倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的
倍及以上,則為高度高血壓人群
一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形
的對(duì)角線
與
相交于點(diǎn)
,
平面
,四邊形
為平行四邊形.
![]()
(1)求證:平面
平面
;
(2)若
,
,點(diǎn)
在線段
上,且
,求平面
與平面
所成角的正弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com