【題目】某中學2018年的高考考生人數是2015年高考考生人數的
倍,為了更好地對比該校考生的升學情況,統計了該校2015年和2018年的高考情況,得到如圖柱狀圖:
![]()
則下列結論正確的是
![]()
A. 與2015年相比,2018年一本達線人數減少
B. 與2015年相比,2018年二本達線人數增加了
倍
C. 2015年與2018年藝體達線人數相同
D. 與2015年相比,2018年不上線的人數有所增加
【答案】D
【解析】
設2015年該校參加高考的人數為
,則2018年該校參加高考的人數為
.
觀察柱狀統計圖,找出各數據,再利用各數量間的關系列式計算得到答案.
設2015年該校參加高考的人數為
,則2018年該校參加高考的人數為
.
對于選項A.2015年一本達線人數為
.2018年一本達線人數為
,可見一本達線人數增加了,故選項A錯誤;
對于選項B,2015年二本達線人數為
,2018年二本達線人數為
,顯然2018年二本達線人數不是增加了0.5倍,故選項B錯誤;
對于選項C,2015年和2018年.藝體達線率沒變,但是人數是不相同的,故選項C錯誤;
對于選項D,2015年不上線人數為
.2018年不上線人數為
.不達線人數有所增加.故選D.
科目:高中數學 來源: 題型:
【題目】對 n N ,設拋物線 y2 2(2n 1) x ,過 P 2n, 0 任作直線 l 與拋物線交與 An, Bn兩點,則數列
的前 n 項和為_____;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點
是雙曲線
的左右焦點,其漸近線為
,且其右焦點與拋物線
的焦點
重合.
(1)求雙曲線
的方程;
(2)過
的直線
與
相交于
兩點,直線
的法向量為
,且
,求
的值
(3)在(2)的條件下,若雙曲線
在第四象限的部分存在一點
滿足
,求
的值及
的面積
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個生產公司投資A生產線500萬元,每萬元可創造利潤
萬元,該公司通過引進先進技術,在生產線A投資減少了x萬元,且每萬元的利潤提高了
;若將少用的x萬元全部投入B生產線,每萬元創造的利潤為
萬元,其中
.
若技術改進后A生產線的利潤不低于原來A生產線的利潤,求x的取值范圍;
若生產線B的利潤始終不高于技術改進后生產線A的利潤,求a的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
(
)的左焦點為
,點
為橢圓
上任意一點,且
的最小值為
,離心率為
.
(1)求橢圓
的方程;
(2)設O為坐標原點,若動直線
與橢圓
交于不同兩點
、
(
、
都在
軸上方),且
.
(i)當
為橢圓與
軸正半軸的交點時,求直線
的方程;
(ii)對于動直線
,是否存在一個定點,無論
如何變化,直線
總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓
過定點
,且與定直線
相切.
(1)求動圓圓心
的軌跡
的方程;
(2)過點
的任一條直線
與軌跡
交于不同的兩點
,試探究在
軸上是否存在定點
(異于點
),使得
?若存在,求點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為迎接2022年北京冬奧會,推廣滑雪運動,某滑雪場開展滑雪促銷活動.該滑雪場的收費標準是:滑雪時間不超過1小時免費,超過1小時的部分每小時收費標準為40元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立地來該滑雪場運動,設甲、乙不超過1小時離開的概率分別為
,
;1小時以上且不超過2小時離開的概率分別為
,
;兩人滑雪時間都不會超過3小時.
(1)求甲、乙兩人所付滑雪費用相同的概率;
(2)設甲、乙兩人所付的滑雪費用之和為隨機變量ξ,求ξ的分布列與數學期望E(ξ).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
的值域為
,記函數
.
(1)求實數
的值;
(2)存在
使得不等式
成立,求實數
的取值范圍;
(3)若關于
的方程
有5個不等的實數根,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com