(本小題共14分)
如圖,在四棱柱
中,底面
是正方形,側棱與底面垂直,點
是正方形
對角線的交點,
,點
,
分別在
和
上,且
.
![]()
(Ⅰ)求證:
∥平面
;
(Ⅱ)若
,求
的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角
的余弦值.
解:(Ⅰ)證明:取
,連結
和
,
∴
,
∥
,
,
∥
,
∴
,
∥
.
∴四邊形
為平行四邊形,
∴
∥
,
在矩形
中,
,
∴四邊形
為平行四邊形.
∴
∥
,
∥
.
∵
平面
,
平面
,
∴
∥平面
. ————————4分
(Ⅱ)連結
,在正四棱柱
中,
平面
,
∴
,
,
∴
平面
,
∴
.
由已知
,得
平面
.
∴
,
,
在△
與△
中,
,
,
∴△
∽△![]()
∴
,
.—————————9分
(Ⅲ)以
為原點,
,
,
所在直線為
,
,
軸,建立空間直角坐標系.
.
,
由(Ⅱ)知
為平面
的一個法向量,
設
為平面
的一個法向量,
則
,即
,
令
,所以
.
∴
,
∵二面角
的平面角為銳角,
∴二面角
的余弦值為
. —————————13分
【解析】略
科目:高中數學 來源: 題型:
(本小題共14分)
如圖,四棱錐
的底面是正方形,
,點E在棱PB上。
![]()
(Ⅰ)求證:平面
;
(Ⅱ)當
且E為PB的中點時,求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線
的離心率為
,右準線方程為![]()
(Ⅰ)求雙曲線
的方程;
(Ⅱ)設直線
是圓
上動點
處的切線,
與雙曲線
交
于不同的兩點
,證明
的大小為定值.
查看答案和解析>>
科目:高中數學 來源:2013屆度廣東省高二上學期11月月考理科數學試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD
底面ABCD,PD=DC,點E是PC的中點,作EF
PB交PB于點F
⑴求證:PA//平面EDB
⑵求證:PB
平面EFD
⑶求二面角C-PB-D的大小
![]()
查看答案和解析>>
科目:高中數學 來源:2010年北京市崇文區高三下學期二模數學(文)試題 題型:解答題
(本小題共14分)
正方體
的棱長為
,
是
與
的交點,
為
的中點.
(Ⅰ)求證:直線
∥平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求三棱錐
的體積.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com