【題目】已知點A是拋物線M:y2=2px(p>0)與圓C:x2+(y﹣4)2=a2在第一象限的公共點,且點A到拋物線M焦點F的距離為a,若拋物線M上一動點到其準線與到點C的距離之和的最小值為2a,O為坐標原點,則直線OA被圓C所截得的弦長為( )
A.2
B.2 ![]()
C.![]()
D.![]()
科目:高中數學 來源: 題型:
【題目】已知極點與直角坐標系的原點重合,極軸與x軸的正半軸重合,圓C的極坐標是ρ=2asinθ,直線l的參數方程是
(t為參數).
(1)若a=2,M為直線l與x軸的交點,N是圓C上一動點,求|MN|的最大值;
(2)若直線l被圓C截得的弦長為
,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+ax2+bx+a2(a、b∈R)
(1)若函數f(x)在x=1處有極值為10,求b的值;
(2)若a=﹣4,f(x)在x∈[0,2]上單調遞增,求b的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點A(﹣4,0)的動直線l與拋物線C:x2=2py(p>0)相交于B、C兩點.
(1)當l的斜率是
時,
,求拋物線C的方程;
(2)設BC的中垂線在y軸上的截距為b,求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐A﹣BCDE中,AB⊥平面BCDE,四邊形BCDE為矩形,F為AC的中點,AB=BC=2,BE=
.![]()
(Ⅰ)證明:EF⊥BD;
(Ⅱ)在線段AE上是否存在一點G,使得二面角D﹣BG﹣E的大小為
?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(理科)已知函數f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,t∈R.
(1)當t≠0時,求f(x)的單調區間;
(2)證明:對任意t∈(0,+∞),f(x)在區間(0,1)內均存在零點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com