【題目】在平面直角坐標系
中,已知圓C滿足:圓心在
軸上,且與圓
相外切.設(shè)圓C與
軸的交點為M,N,若圓心C在
軸上運動時,在
軸正半軸上總存在定點
,使得
為定值,則點
的縱坐標為_________.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形
所在平面與
所在平面互相垂直,
,
.
![]()
(1)若M為
中點,N為
中點,證明:
平面
;
(2)若
,
,且
與平面
所成角的正弦值為
,求
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD
A1B1C1D1中,E,F分別為棱AA1,CC1的中點,則在空間中與三條直線A1D1,EF,CD都相交的直線( )
A.不存在B.有且只有兩條C.有且只有三條D.有無數(shù)條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,點
,
是圓上一動點,點
在線段
上,點
在半徑
上,且滿足
.
(1)當
在圓上運動時,求點
的軌跡
的方程;
(2)設(shè)過點
的直線
與軌跡
交于點
(
不在
軸上),垂直于
的直線交
于點
,與
軸交于點
,若
,求點
橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
的參數(shù)方程為
(
為參數(shù)),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)寫出曲線
的極坐標方程,并求出曲線
與
公共弦所在直線的極坐標方程;
(2)若射線
與曲線
交于
兩點,與曲線
交于
點,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形
中,![]()
沿對角線
將△
折起,使
之間的距離為
若
分別為線段
上的動點
![]()
(1)求線段
長度的最小值;
(2)當線段
長度最小時,求直線
與平面
所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年9月26日,攜程網(wǎng)發(fā)布《2019國慶假期旅游出行趨勢預(yù)測報告》,2018年國慶假日期間,西安共接待游客1692.56萬人次,今年國慶有望超過2000萬人次,成為西部省份中接待游客量最多的城市.旅游公司規(guī)定:若公司某位導(dǎo)游接待旅客,旅游年總收人不低于40(單位:萬元),則稱該導(dǎo)游為優(yōu)秀導(dǎo)游.經(jīng)驗表明,如果公司的優(yōu)秀導(dǎo)游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導(dǎo)游40名,統(tǒng)計他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:
![]()
(1)求
的值,并比較甲、乙兩家旅游公司,哪家的影響度高?
(2)求甲公司一年內(nèi)導(dǎo)游旅游總收入的中位數(shù),乙公司一年內(nèi)導(dǎo)游旅游總收入的平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合
,
,分別從
,
中各取2個不同的數(shù),能組成不同的能被3整除的四位偶數(shù)的個數(shù)是________(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為坐標原點,橢圓
的右焦點為
,離心率為
,過點
的直線![]()
與
相交于
兩點,點
為線段
的中點.
(1)當
的傾斜角為
時,求直線
的方程;
(2)試探究在
軸上是否存在定點
,使得
為定值?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com