設函數
,
;
(1)求證:函數
在
上單調遞增;
(2)設
,![]()
,若直線![]()
軸,求
兩點間的最短距離.
科目:高中數學 來源: 題型:解答題
已知函數f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數.
(1)試確定a,b的值;
(2)討論函數f(x)的單調區間;
(3)若對任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
函數
,過曲線
上的點
的切線方程為
.
(1)若
在
時有極值,求
的表達式;
(2)在(1)的條件下,求
在[-3,1]上的最大值;
(3)若函數
在區間[-2,1]上單調遞增,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定義在
上的函數
,其中
為常數.
(1)當
是函數
的一個極值點,求
的值;
(2)若函數
在區間
上是增函數,求實數
的取值范圍;
(3)當
時,若
,在
處取得最大值,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
.
(I)求函數
的單調區間;
(Ⅱ)若
,試解答下列兩小題.
(i)若不等式
對任意的
恒成立,求實數
的取值范圍;
(ii)若
是兩個不相等的正數,且以
,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com