【題目】已知函數f(x)=|x|,g(x)=﹣|x﹣4|+m.
(1)解關于x的不等式g[f(x)]+3﹣m>0;
(2)若函數f(x)的圖象恒在函數g(2x)圖象的上方,求實數m的取值范圍.
【答案】
(1)解:由g[f(x)]+3﹣m>0得||x|﹣4|<3,
∴﹣3<|x|﹣4<3,
∴1<|x|<7,
故不等式的解集為(﹣7,﹣1)∪(1,7)
(2)解:∵函數f(x)的圖象恒在函數g(x)圖象的上方
∴f(x)>g(2x)恒成立,
即m<|2x﹣4|+|x|恒成立,
∵|2x﹣4|+|x|=
,
∴|2x﹣4|+|x|≥2,
∴m的取值范圍為m<2
【解析】(1)問題轉化為﹣3<|x|﹣4<3,解出即可;(2)由題意得f(x)>g(2x)恒成立,即m<|2x﹣4|+|x|恒成立,通過討論x的范圍求出m的范圍即可.
【考點精析】解答此題的關鍵在于理解絕對值不等式的解法的相關知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log4(4x+1)﹣
x.
(1)試判斷函數f(x)的奇偶性并證明;
(2)設g(x)=log4(a2x﹣
a),若函數f(x)與g(x)的圖象有且只有一個公共點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
在
單調遞增,其中
.
(1)求
的值;
(2)若
,當
時,試比較
與
的大小關系(其中
是
的導函數),請寫出詳細的推理過程;
(3)當
時,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在空間直角坐標系中,已知A(3,0,1)和B(1,0,-3),試問
(1)在y軸上是否存在點M,滿足
?
(2)在y軸上是否存在點M,使△MAB為等邊三角形?若存在,試求出點M坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某海濱游樂場出租快艇的收費辦法如下:不超過十分鐘收費80元;超過十分鐘,超過部分按每分鐘10元收費(對于其中不足一分鐘的部分,若小于0.5分鐘則不收費,若大于或等于0.5分鐘則按一分鐘收費),小茗同學為該游樂場設計了一款收費軟件,程序框圖如圖所示,其中x(分鐘)為航行時間,y(元)為所收費用,用[x]表示不大于x的最大整數,則圖中①處應填( ) ![]()
A.y=10[x]
B.y=10[x]﹣20
C.y=10[x﹣
]﹣20
D.y=10[x+
]﹣20
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為直角梯形,
,
,平面
底面ABCD,Q為AD的中點,M是棱
上的點,
(Ⅰ)若
是棱
的中點,求證:
;
(Ⅱ)若二面角
的大小為
,試求
的值.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com