已知橢圓
的離心率為
,且過點
,過
的右焦點
任作直線
,設
交
于
,
兩點(異于
的左、右頂點),再分別過點
,
作
的切線
,
,記
與
相交于點
.
(1)求橢圓
的標準方程;
(2)證明:點
在一條定直線上.
![]()
(1)
;(2)
.
【解析】(1)根據離心率和b,可求出a,c的值.
(2) 解本題的關鍵是
,
=……=![]()
然后借助韋達定理解決即可.
解:(1)由題意,得
,
,…2分
又
,
………4分
解得
,
,
………5分
故橢圓
的標準方程為
;………6分
(2)當橢圓
上的點
在
軸上方,即
時,
,
則
,
………………………8分
再由橢圓的對稱性,當點
在
軸下方,,即
時,仍有
.
因此橢圓
在點
的切線的斜率
. …………………10分
①當直線
軸時,
,
,從而切線
,
的方程分別為
,
,則點
; ……………11分
②當直線
存在斜率時,設
,
由
,消去
,得
,
則
,
.
……………13分
于是
,
![]()
![]()
從而方程
可化為
,而
,所以
.
![]()
即點
的橫坐標恒為
,這表明點
恒在直線
上.
………………15分.
科目:高中數學 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
| D、以上均不對 |
查看答案和解析>>
科目:高中數學 來源: 題型:
| 1 |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數學 來源: 題型:
| x2 |
| a2 |
| ||
| 3 |
| OA |
| OB |
| 1 |
| 2 |
| OM |
查看答案和解析>>
科目:高中數學 來源: 題型:
| ||
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| 2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com