【題目】已知對任意的x∈R,3a(sinx+cosx)+2bsin2x≤3(a,b∈R)恒成立,則當(dāng)a+b取得最小值時(shí),a的值是 .
【答案】﹣ ![]()
【解析】解:由題意可令sinx+cosx=﹣
, 兩邊平方可得1+2sinxcosx=
,
即有sin2x=﹣
,
代入3a(sinx+cosx)+2bsin2x≤3,可得﹣
a﹣
b≤3,
可得a+b≥﹣2,
當(dāng)a+b=﹣2時(shí),令t=sinx+cosx=
sin(x+
)∈[﹣
,
],
即有sin2x=t2﹣1,代入3a(sinx+cosx)+2bsin2x≤3,
可得﹣2bt2+3(2+b)t+3+2b≥0,對t∈[﹣
,
]恒成立,
則△=9(2+b)2+8b(3+2b)≤0,
即為(5b+6)2≤0,但(5b+6)2≥0,則5b+6=0,可得b=﹣
,a=﹣
.
而當(dāng)b=﹣
,a=﹣
時(shí),3a(sinx+cosx)+2bsin2x=﹣
t﹣
(t2﹣1)
=﹣
(t+
)2+3≤3.
所以當(dāng)a+b取得最小值﹣2,此時(shí)a=﹣
.
所以答案是:﹣
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E:
(a>b>0)的離心率為
,F是橢圓E的右焦點(diǎn),直線AF的斜率為
,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
,
為偶函數(shù),函數(shù)
的圖象與直線
相切.
(1)求
的解析式;
(2)已知函數(shù)
且
,求
的單調(diào)遞減區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3. ![]()
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直線AE與平面ABCD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合
,集合
.
當(dāng)
時(shí),求
;
,不等式
恒成立,求實(shí)數(shù)a的取值范圍;
若“
”是“
”的必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題
關(guān)于
的不等式
的解集是
,命題
函數(shù)
的定義域?yàn)?/span>
.
(1)如果
為真命題,求實(shí)數(shù)
的取值范圍;
(2)如果
為真命題,
為假命題, 求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某樂隊(duì)參加一戶外音樂節(jié),準(zhǔn)備從3首原創(chuàng)新曲和5首經(jīng)典歌曲中隨機(jī)選擇4首進(jìn)行演唱.
(1)求該樂隊(duì)至少演唱1首原創(chuàng)新曲的概率;
(2)假定演唱一首原創(chuàng)新曲觀眾與樂隊(duì)的互動(dòng)指數(shù)為a(a為常數(shù)),演唱一首經(jīng)典歌曲觀眾與樂隊(duì)的互動(dòng)指數(shù)為2a,求觀眾與樂隊(duì)的互動(dòng)指數(shù)之和X的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
,點(diǎn)A、B是函數(shù)f(x)圖象上不同兩點(diǎn),則∠AOB(O為坐標(biāo)原點(diǎn))的取值范圍是( )
A.(0,
)
B.(0,
]
C.(0,
)
D.(0,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(Ⅰ)當(dāng)
時(shí),
取得極值,求
的值;
(Ⅱ)當(dāng)函數(shù)
有兩個(gè)極值點(diǎn)
,且
時(shí),總有
成立,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com