【題目】【2018屆西藏拉薩市高三第一次模擬考試(期末)】如圖,四棱錐
底面為等腰梯形,
且
,點
為
中點.
![]()
(1)證明:
平面
;
(2)若
平面
,
,直線
與平面
所成角的正切值為
,求四棱錐
的體積
.
【答案】(1)見解析;(2)
.
【解析】試題分析:(1)證明線面平行可利用線面平行的判定定理,利用三角形的中位線定理可以得出線線平行,進而得出線面平行;(2)根據底面ABCD為等腰梯形,作AG垂直BC,垂足為G,求出BG和AG,得出AB,便可求出底面的面積,根據PA與平面ABCD垂直,則
為直線直線
與平面
所成角,利用其正切值求出PA,再根據錐體體積公式求出體積 .
試題解析:
(1)取
中點
,連接
、
.
由于
為
中位線,所以
,
又
平面
,
平面
,所以
平面
.
由于
且
,
則
,所以四邊形
為平行四邊形,所以
,
因為
平面
,
面
,所以
平面
.
因為
平面
,
平面
,
,
,
平面
,
所以平面
平面
.
又
平面
,所以
平面
.
解:(2)作
于點
,則
.
在
中,
,
,則
,
.
由
平面
知,直線
與平面
所成角為
,故
,
即在
中,有
,則
.
所以,四棱錐
的體積
.
科目:高中數學 來源: 題型:
【題目】已知函數
,
.
(1)當
時,討論函數
的單調性;
(2)當
時,求證:函數
有兩個不相等的零點
,
,且
.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)討論函數單調區間即解導數大于零求得增區間,導數小于零求得減區間(2)函數有兩個不同的零點,先分析函數單調性得零點所在的區間,
在
上單調遞增,在
上單調遞減.∵
,
,
,∴函數
有兩個不同的零點,且一個在
內,另一個在
內.
不妨設
,
,要證
,即證
,
在
上是增函數,故
,且
,即證
. 由
,得
,
令
,
,得
在
上單調遞減,∴
,且∴
,
,∴
,即∴
,故
得證
解析:(1)當
時,
,得
,
令
,得
或
.
當
時,
,
,所以
,故
在
上單調遞減;
當
時,
,
,所以
,故
在
上單調遞增;
當
時,
,
,所以
,故
在
上單調遞減;
所以
在
,
上單調遞減,在
上單調遞增.
(2)證明:由題意得
,其中
,
由
得
,由
得
,
所以
在
上單調遞增,在
上單調遞減.
∵
,
,
,
∴函數
有兩個不同的零點,且一個在
內,另一個在
內.
不妨設
,
,
要證
,即證
,
因為
,且
在
上是增函數,
所以
,且
,即證
.
由
,得
,
令
,
,
則
.
∵
,∴
,
,
∴
時,
,即
在
上單調遞減,
∴
,且∴
,
,
∴
,即∴
,故
得證.
【題型】解答題
【結束】
22
【題目】已知曲線
的參數方程為
(
為參數).以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸,取相同的單位長度建立極坐標系,設直線
的極坐標方程為
.
(1)求曲線
和直線
的普通方程;
(2)設
為曲線
上任意一點,求點
到直線
的距離的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為a元,在下一年續保時,實行的是費率浮動機制,且保費與上一年度車輛發生道路交通事故的情況相聯系.發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和費率浮動比率表 | ||
浮動因素 | 浮動比率 | |
A1 | 上一個年度未發生有責任道路交通事故 | 下浮10% |
A2 | 上兩個年度未發生有責任道路交通事故 | 下浮20% |
A3 | 上三個及以上年度未發生有責任道路交通事故 | 下浮30% |
A4 | 上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% |
A6 | 上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機構調查的頻率一致,完成下列問題:
①若該銷售商店內有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選2輛車,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校高三年級有學生750人,其中男生450人,女生300人,為了研究學生的數學成績是否與性別有關,現采用分層抽樣的方法,從中抽取了100名學生,先統計了他們期中考試的數學分數,然后按性別分別分為男、女兩組,再將兩組學生的分數分成5組,分別加以統計,得到如圖所示的頻率分布直方圖.
![]()
(1)從樣本中分數小于110分的學生中隨機抽取兩人,求兩人性別相同的概率;
(2)若規定分數不小于130分的學生為“數學尖子生”,試判斷能否在犯錯誤的概率不超過0.1的前提下認為“數學尖子生與性別有關”.
附: ![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為
元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
| 上一個年度未發生有責任道路交通事故 | 下浮10% |
| 上兩個年度未發生責任道路交通事故 | 下浮20% |
| 上三個及以上年度未發生有責任道路交通事故 | 下浮30% |
| 上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% |
| 上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% |
| 上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機購為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 |
|
|
|
|
|
|
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機構調查的頻率一致,完成下列問題:
①若該銷售商店內有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個四棱錐的三視圖如圖所示,關于這個四棱錐,下列說法正確的是( )
![]()
A. 最長的棱長為![]()
B. 該四棱錐的體積為![]()
C. 側面四個三角形都是直角三角形
D. 側面三角形中有且僅有一個等腰三角形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖.圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃.下面敘述不正確的是 ( )
![]()
A. 各月的平均最低氣溫都在0℃以上
B. 七月的平均溫差比一月的平均溫差大
C. 三月和十一月的平均最高氣溫基本相同
D. 平均最高氣溫高于20℃的月份有5個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知x與y之間的幾組數據如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 0 | 2 | 1 | 3 | 3 | 4 |
假設根據上表數據所得的線性回歸方程為
=
x+
.若某同學根據上表中的前兩組數據(1,0)和(2,2)求得的直線方程為y=b′x+a′,則以下結論正確的是( )
A.
>b′,
>a′ B.
>b′,
<a′
C.
<b′,
>a′ D.
<b′,
<a′
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com