【題目】已知{xn}是各項均為正數的等比數列,且x1+x2=3,x3-x2=2.
(1)求數列{xn}的通項公式;
(2)如圖,在平面直角坐標系xOy中,依次連接點P1(x1,1),P(x2,2),…,Pn+1(xn+1,n+1)得到折線P1P2…Pn+1,求由該折線與直線y=0,x=x1,x=xn+1所圍成的區域的面積Tn.
![]()
【答案】(1)xn=2n-1.(2) Tn=
.
【解析】試題分析:
(1)根據條件可求得等比數列中x1=1,q=2,故可得通項公式為xn=2n-1.(2)由題意可得梯形PnPn+1Qn+1Qn的上下底分別為
,高為xn+1-xn=2n-1,故可得梯形的面積,并記為bn,則
,然后根據錯位相減法求和即可.
試題解析:
(1)設等比數列{xn}的公比為q.
由題意得![]()
消去x得3q2-5q-2=0.
又q>0,
解得q=2,
∴x1=1.
∴數列{xn}的通項公式為xn=2n-1.
(2)過P1,P2,…,Pn+1向x軸作垂線,垂足分別為Q1,Q2,…,Qn+1.
由(1)得xn+1-xn=2n-2n-1=2n-1.
記梯形PnPn+1Qn+1Qn的面積為bn,則
.
∴Tn=3×2-1+5×20+7×21+…+(2n-1)×2n-3+(2n+1)×2n-2, ①
又2Tn=3×20+5×21+7×22+…+(2n-1)×2n-2+(2n+1)×2n-1, ②
①-②得
-Tn=3×2-1+(2+22+…+2n-1)-(2n+1)×2n-1
![]()
,
∴
.
科目:高中數學 來源: 題型:
【題目】已知函數
的最大值為
,
的圖像關于
軸對稱.
(1)求實數
,
的值.
(2)設
,則是否存在區間
,使得函數
在區間
上的值域為
?若存在,求實數
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定點
,若
是直線
上位于第一象限內的一點,直線
與
軸的正半軸相交于點
.試探究:
的面積是否具有最小值?若有,求出點
的坐標;若沒有,則說明理由.若點
為直線
上的任意一點,情況又會怎樣呢?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
的參數方程是
(
為參數)以原點為極點,
軸正半軸為極軸,并取與直角坐標系相同的單位長度,建立極坐標系,曲線
的極坐標方程是
.
(1)求曲線
,
的直角坐標方程;
(2)若
、
分別是曲線
和
上的任意點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由國家公安部提出,國家質量監督檢驗檢疫總局發布的《車輛駕駛人員血液、呼氣酒精含量閥值與檢驗標準(
)》于
年
月
日正式實施.車輛駕駛人員酒飲后或者醉酒后駕車血液中的酒精含量閥值見表.經過反復試驗,一般情況下,某人喝一瓶啤酒后酒精在人體血液中的變化規律的“散點圖”見圖,
![]()
喝
瓶啤酒的情況
且圖表示的函數模型
,則該人喝一瓶啤酒后至少經過多長時間才可以駕車(時間以整小時計算)?(參考數據:
,
)
( )
駕駛行為類型 | 閥值 |
飲酒后駕車 |
|
醉酒后駕車 |
|
車輛駕車人員血液酒精含量閥值
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學習小組對成都市一中心路段(限行速度為
千米/小時)的擁堵情況進行調查統計,通過數據分析發現:該路段的車流速度
(輛/千米)與車流密度
(千米/小時)之間存在如下關系:如果車流密度不超過
該路段暢通無阻(車流速度為限行速度);當車流密度在
時,車流速度是車流密度的一次函數;車流密度一旦達到
該路段交通完全癱瘓(車流速度為零).
(1)求
關于
的函數![]()
(2)已知車流量(單位時間內通過的車輛數)等于車流密度與車流速度的乘積,求此路段車流量的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲同學寫出三個不等式:
:
,
:
,
:
,然后將
的值告訴了乙、丙、丁三位同學,要求他們各用一句話來描述,以下是甲、乙、丙、丁四位同學的描述:
乙:
為整數;
丙:
是
成立的充分不必要條件;
丁:
是
成立的必要不充分條件;
甲:三位同學說得都對,則
的值為__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com