11121314151617">
【題目】將正整數(shù)1,2,3,
,n,
排成數(shù)表如表所示,即第一行3個數(shù),第二行6個數(shù),且后一行比前一行多3個數(shù),若第i行,第j列的數(shù)可用
表示,則100可表示為______.
第1列 | 第2列 | 第3列 | 第4列 | 第5列 | 第6列 | 第7列 | 第8列 |
| |
第1行 | 1 | 2 | 3 | ||||||
第2行 | 9 | 8 | 7 | 6 | 5 | 4 | |||
第3行 | 10/p> | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|
|
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
為參數(shù)
,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
.
1
求圓C的普通方程和直線l的直角坐標(biāo)方程;
2
設(shè)M是直線l上任意一點,過M做圓C切線,切點為A、B,求四邊形AMBC面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的方程為
,曲線
:
(
為參數(shù),
),在以原點
為極點,
軸正半軸為極軸的極坐標(biāo)系中,曲線
:
.
(1)求曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)若直線
與曲線
有公共點,且直線
與曲線
的交點
恰好在曲線
與
軸圍成的區(qū)域(不含邊界)內(nèi),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生將語文、數(shù)學(xué)、英語、物理、化學(xué)、生物6科的作業(yè)安排在周六、周日完成,要求每天至少完成兩科,且數(shù)學(xué),物理作業(yè)不在同一天完成,則完成作業(yè)的不同順序種數(shù)為( )
A. 600B. 812C. 1200D. 1632
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,以
為極點,
軸正半軸為極軸建立極坐標(biāo)系.已知曲線
的參數(shù)方程為
(
為參數(shù)),
,
為過點
的兩條直線,
交
于
,
兩點,
交
于
,
兩點,且
的傾斜角為
,
.
(1)求
和
的極坐標(biāo)方程;
(2)當(dāng)
時,求點
到
,
,
,
四點的距離之和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓
的左焦點為
,右頂點為
,上頂點為
.
(1)已知橢圓的離心率為
,線段
中點的橫坐標(biāo)為
,求橢圓的標(biāo)準(zhǔn)方程;
(2)已知△
外接圓的圓心在直線
上,求橢圓的離心率
的值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了更好地服務(wù)民眾,某共享單車公司通過
向共享單車用戶隨機(jī)派送每張面額為0元,1元,2元的三種騎行券.用戶每次使用
掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得1元獎券、獲得2元獎券的概率分別是0.5、0.2,且各次獲取騎行券的結(jié)果相互獨立.
(I)求用戶騎行一次獲得0元獎券的概率;
(II)若某用戶一天使用了兩次該公司的共享單車,記該用戶當(dāng)天獲得的騎行券面額之和為
,求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列
滿足
,
.
(1)求
的通項公式;
(2)各項均為正數(shù)的等比數(shù)列
中,
,
,求
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,為了滿足廣大人民的消費需求,某共享單車公司欲投放一批共享單車,單車總數(shù)不超過100輛,現(xiàn)有A,B兩種型號的單車:其中A型車為運(yùn)動型,成本為400元
輛,騎行半小時需花費
元;B型車為輕便型,成本為2400元
輛,騎行半小時需花費1元
若公司投入成本資金不能超過8萬元,且投入的車輛平均每車每天會被騎行2次,每次不超過半小時
不足半小時按半小時計算
,問公司如何投放兩種型號的單車才能使每天獲得的總收入最多,最多為多少元?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com