【題目】如圖,在等腰直角
中,
,
,點
在線段
上.
![]()
(Ⅰ) 若
,求
的長;
(Ⅱ)若點
在線段
上,且
,問:當
取何值時,
的面積最?并求出面積的最小值.
【答案】(Ⅰ)
或
(Ⅱ)當
時,
的最大值為
,此時
的面積取到最小值.即2
時,
的面積的最小值為![]()
【解析】
解:(1)在△OMP中,∠OPM=45°,OM=
,OP=2
,
由余弦定理得,OM2=OP2+MP2-2OP·MP·cos45°,
得MP2-4MP+3=0,
解得MP=1或MP=3.
(2)設(shè)∠POM=α,0°≤α≤60°,
在△OMP中,由正弦定理,
得
=
,
所以OM=
,
同理ON=
.
故S△OMN=
OM·ON·sin∠MON
=
×![]()
=![]()
=![]()
=![]()
=![]()
=![]()
=
.
因為0°≤α≤60°,
30°≤2α+30°≤150°,
所以當α=30°時,sin(2α+30°)的最大值為1,
此時△OMN的面積取到最小值.
即∠POM=30°時,△OMN的面積的最小值為8-4
.
科目:高中數(shù)學 來源: 題型:
【題目】為了加強中學生實踐、創(chuàng)新和團隊建設(shè)能力的培養(yǎng),促進教育教學改革,市教育局舉辦了全市中學生創(chuàng)新知識競賽,某中學舉行了選拔賽,共有150名學生參加,為了了解成績情況,從中抽取50名學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,請你根據(jù)尚未完成的頻率分布表,解答下列問題:
(1)完成頻率分布表(直接寫出結(jié)果);
(2)若成績在90.5分以上的學生獲一等獎,試估計全校獲一等獎的人數(shù),現(xiàn)在從全校所有獲一等獎的同學中隨機抽取2名同學代表學校參加競賽,某班共有2名同學榮獲一等獎,求該班同學恰有1人參加競賽的概率.
分組 | 頻數(shù) | 頻率 | |
第1組 | [60.5,70.5) | 0.26 | |
第2組 | [70.5,80.5) | 17 | |
第3組 | [80.5,90.5) | 18 | 0.36 |
第4組 | [90.5,100.5] | ||
合計 | 50 | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】黨的十八大以來,我國精準扶貧已經(jīng)實施了六年,我國貧困人口從2012年的9899萬人,減少到2018年的1660萬人,2019年將努力實現(xiàn)減少貧困人口1000萬人以上的目標,力爭2020年在現(xiàn)行標準下,農(nóng)村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當前扶貧領(lǐng)域存在的突出問題,市扶貧辦近三年來,每半年對貧困戶(用
表示,單位:萬戶)進行取樣,統(tǒng)計結(jié)果如圖所示,從2016年6月底到2019年6月底的共進行了七次統(tǒng)計,統(tǒng)計時間用序號
表示,例如:2016年12月底(時間序號為2)貧困戶為5.2萬戶.
![]()
(1)求
關(guān)于
的線性回歸方程
,并預測到2020年12月底,該市能否實現(xiàn)貧困戶全部脫貧;
(2)為盡快打贏脫貧攻堅戰(zhàn),該市扶貧辦在2019年6月底時,對全市貧困戶隨機抽取了100戶貧困戶,對每個家庭最主要經(jīng)濟收入來源進行抽樣調(diào)查,統(tǒng)計結(jié)果如圖.并決定據(jù)此選派一批農(nóng)業(yè)技術(shù)人員對全市所有貧困戶中,家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入的貧困戶進行對口幫扶,每一名農(nóng)業(yè)技術(shù)人員對口幫扶貧困戶90戶,則該市應(yīng)分別安排多少農(nóng)業(yè)技術(shù)人員對家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入的貧困戶進行對口幫扶?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,公園內(nèi)有一塊邊長為
的正三角形
空地,擬改建成花園,并在其中建一直道
方便花園管理. 設(shè)
分別在
上,且
均分三角形
的面積.
(1)設(shè)
(
),
,試將
表示為
的函數(shù)關(guān)系式;
(2)若
是灌溉水管,為節(jié)約成本,希望其最短,
的位置應(yīng)在哪里?若
是參觀路線,希望其最長,
的位置應(yīng)在哪里?
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線
:
,
:
,則下面結(jié)論正確的是( )
A.把
上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線![]()
B.把
上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移
個單位長度,得到曲線![]()
C.把
上各點的橫坐標縮短到原來的
倍,縱坐標不變,再把得到的曲線向左平移
個單位長度,得到曲線![]()
D.把
上各點的橫坐標縮短到原來的
倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
,過直線
:
上任一點
向拋物線
引兩條切線
(切點為
,且點
在
軸上方).
(1)求證:直線
過定點,并求出該定點;
(2)拋物線
上是否存在點
,使得
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為了研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:
,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
![]()
(1)根據(jù)“25周歲以上組”的頻率分布直方圖,求25周歲以上組工人日平均生產(chǎn)件數(shù)的中位數(shù)的估計值(四舍五入保留整數(shù));
(2)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(3)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成
列聯(lián)表,并判斷是否有
的把握認為“生產(chǎn)能手與工人所在年齡組有關(guān)”?
生產(chǎn)能手 | 非生產(chǎn)能手 | 合計 | |
25周歲以上組 | |||
25周歲以下組 | |||
合計 |
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
附: ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=
,AC=3, BC=2,P是△ABC內(nèi)的一點.
![]()
(1)若△BPC是以BC為斜邊的等腰直角三角形,求PA長;
(2)若∠BPC=
,求△PBC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
+
=1的左焦點為F,直線x-y-2=0,x-y+2=0與橢圓分別相交于A,B,C,D,則|AF|+|BF|+|CF|+|DF|=______.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com