【題目】已知橢圓
和雙曲線
有共同的焦點(diǎn)
,
,點(diǎn)
是
,
的交點(diǎn),若
是銳角三角形,則橢圓
離心率
的取值范圍是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】
設(shè)∠F1PF2=θ,則
,得出
,利用橢圓和雙曲線的焦點(diǎn)三角形的面積公式可得出
,結(jié)合c=2,可得出
,然后將橢圓和雙曲線的方程聯(lián)立,求出交點(diǎn)P的橫坐標(biāo),利用該點(diǎn)的橫坐標(biāo)位于區(qū)間(﹣c,c),得出
,可得出
,從而得出橢圓C1的離心率e的取值范圍.
解:設(shè)∠F1PF2=θ,則
,所以,
,則
,
由焦點(diǎn)三角形的面積公式可得
,所以,
,
雙曲線的焦距為4,橢圓的半焦距為c=2,則b2=a2﹣c2=a2﹣4>3,
得
,所以,橢圓C1的離心率
.
聯(lián)立橢圓C1和雙曲線C2的方程
,
得
,得
,
由于△PF1F2為銳角三角形,則點(diǎn)P的橫坐標(biāo)
,則
,所以,
.
因此,橢圓C1離心率e的取值范圍是
.
故選:C.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
滿足:
,
. (其中
為自然對(duì)數(shù)的底數(shù),
)
(Ⅰ)證明:
;
(Ⅱ)設(shè)
,是否存在實(shí)數(shù)
,使得
對(duì)任意
成立?若存在,求出
的一個(gè)值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點(diǎn)P,Q分別為A1B1,BC的中點(diǎn).
![]()
(1)求異面直線BP與AC1所成角的余弦值;
(2)求直線CC1與平面AQC1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某保險(xiǎn)公司的推銷員中隨機(jī)抽取50名,統(tǒng)計(jì)這些推銷員某月的月銷售額(單位:千元),由統(tǒng)計(jì)結(jié)果得如圖頻數(shù)分別表:
月銷售額 分組 | [12.25,14.75) | [14.75,17.25) | [17.25,19.75) | [19.75,22.25) | [22.25,24.75) |
頻數(shù) | 4 | 10 | 24 | 8 | 4 |
![]()
(1)作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計(jì)這些推銷員的月銷售額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),公司將推銷員的月銷售指標(biāo)確定為17.875千元,試判斷是否有60%的職工能夠完成該銷售指標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形
中,
,
是邊長(zhǎng)為l的正方形,平面
底面
,若
分別是
的中點(diǎn).
(1)求證:
底面
;
(2)求幾何體
的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長(zhǎng)為1正方體
中,點(diǎn)
,
分別為邊
,
的中點(diǎn),將
沿
所在的直線進(jìn)行翻折,將
沿
所在直線進(jìn)行翻折,在翻折的過程中,下列說法錯(cuò)誤的是( )
![]()
A. 無論旋轉(zhuǎn)到什么位置,
、
兩點(diǎn)都不可能重合
B. 存在某個(gè)位置,使得直線
與直線
所成的角為![]()
C. 存在某個(gè)位置,使得直線
與直線
所成的角為![]()
D. 存在某個(gè)位置,使得直線
與直線
所成的角為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
.
(1)寫出直線
的普通方程及曲線
的直角坐標(biāo)方程;
(2)已知點(diǎn)
,點(diǎn)
,直線
過點(diǎn)
且與曲線
相交于
,
兩點(diǎn),設(shè)線段
的中點(diǎn)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種藥在病人血液中的含量不低于2克時(shí),它才能起到有效治療的作用.已知每服用m(
且
)個(gè)單位的藥劑,藥劑在血液中的含量y(克)隨著時(shí)間x(時(shí))變化的函數(shù)關(guān)系式近似為
,其中
.
(1)若病人一次服用3個(gè)單位的藥劑,則有效治療時(shí)間可達(dá)多少小時(shí)?
(2)若病人第一次服用2個(gè)單位的藥劑,4個(gè)小時(shí)后再服用m個(gè)單位的藥劑,要使接下來的2個(gè)小時(shí)中能夠持續(xù)有效治療,試求m的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com