【題目】某少數民族的刺繡有著悠久的歷史,如圖(1),(2),(3),(4)為最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數越多刺繡越漂亮.現按同樣的規律刺繡(小正方形的擺放規律相同),設第n個圖形包含f(n)個小正方形. ![]()
(1)求出f(5)的值.
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關系式,并根據你得到的關系式求出f(n)的表達式.
【答案】
(1)f(5)=41.
(2)因為f(2)-f(1)=4=4×1,
f(3)-f(2)=8=4×2,
f(4)-f(3)=12=4×3,
f(5)-f(4)=16=4×4,
…
由上式規律,所以得出f(n+1)-f(n)=4n.
因為f(n+1)-f(n)=4nf(n+1)=f(n)+4n
f(n)=f(n-1)+4(n-1)
=f(n-2)+4(n-1)+4(n-2)
=f(n-3)+4(n-1)+4(n-2)+4(n-3)
=…
=f(1)+4(n-1)+4(n-2)+4(n-3)+…+4
=2n2-2n+1.
【解析】找出第n+1項和第n項之間的關系,再利用數列中由遞推數列推導通項數列的方法求f(n)
科目:高中數學 來源: 題型:
【題目】已知α,β∈(
,π),且sinα+cosα=a,cos(β﹣α)=
.
(1)若a=
,求sinαcosα+tanα﹣
的值;
(2)若a=
,求sinβ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某矩形花壇ABCD長AB=3m,寬AD=2m,現將此花壇在原有基礎上有拓展成三角形區域,AB、AD分別延長至E、F并使E、C、F三點共線. ![]()
(1)要使三角形AEF的面積大于16平方米,則AF的長應在什么范圍內?
(2)當AF的長度是多少時,三角形AEF的面積最。坎⑶蟪鲎钚∶娣e.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】10.已知{an}是正數組成的數列,a1=1,且點(
,an+1)(n∈N*)在函數y=x2+1的圖象上.
(1)求數列{an}的通項公式.
(2)若數列{bn}滿足b1=1,bn+1=bn+
,求證:bn·bn+2<
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
中心在坐標原點,焦點在坐標軸上,且經過
三點.
(1)求橢圓
的方程;
(2)在直線
上任取一點
,連接
,分別與橢圓
交于
兩點,判斷直線
是否過定點?若是,求出該定點.若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,△ABE為等腰直角三角形,∠BAE=90°,且AD⊥AE. ![]()
(1)證明:平面AEC⊥平面BED.
(2)求直線EC與平面BED所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com