5.0246.63510.828附:">
【題目】某校在本校任選了一個班級,對全班50名學生進行了作業量的調查,根據調查結果統計后,得到如下的
列聯表,已知在這50人中隨機抽取1人,認為作業量大的概率為
.
| 認為作業量大 | 認為作業量不大 | 合計 |
男生 | 18 | ||
女生 | 17 | ||
合計 | 50 |
(Ⅰ)請完成上面的列聯表;
(Ⅱ)根據列聯表的數據,能否有
的把握認為“認為作業量大”與“性別”有關?
附表:
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | span>5.024 | 6.635 | 10.828 |
附:![]()
科目:高中數學 來源: 題型:
【題目】高鐵、網購、移動支付和共享單車被譽為中國的“新四大發明”,彰顯出中國式創新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進行調查,得到如下數據:
每周移動支付次數 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,由以上數據完成下列2×2列聯表,并判斷能否在犯錯誤的概率不超過0.005的前提下,認為“移動支付活躍用戶”與性別有關?
移動支付活躍用戶 | 非移動支付活躍用戶 | 總計 | |
男 | |||
女 | |||
總計 | 100 |
(2)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,視頻率為概率,在我市所有“移動支付達人”中,隨機抽取4名用戶.為了鼓勵男性用戶使用移動支付,對抽出的男“移動支付達人”每人獎勵300元,記獎勵總金額為
,求
的分布列及數學期望.
附公式及表如下:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:方程x2-2mx+m=0沒有實數根;命題q:x∈R,x2+mx+1≥0.
(1)寫出命題q的否定“
q”.
(2)如果“p∨q”為真命題,“p∧q”為假命題,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用收集到的6組數據對
制作成如圖所示的散點圖(點旁的數據為該點坐標),并由最小二乘法計算得到回歸直線
的方程:
,相關系數為
,相關指數為
;經過殘差分析確定點
為“離群點”(對應殘差過大的點),把它去掉后,再用剩下的5組數據計算得到回歸直線
的方程:
,相關系數為
,相關指數為
.則以下結論中,不正確的是( )
![]()
A.
,
B.
,![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數,且f(x﹣
)=f(x+
)恒成立,當x∈[2,3]時,f(x)=x,則當x∈(﹣2,0)時,函數f(x)的解析式為( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商品在近30天內每件的銷售價格p(元)與時間t(天)的函數關系是
該商品的日銷售量Q(件)與時間t(天)的函數關系是Q=-t+40(0<t≤30,t∈N).
(1)求這種商品的日銷售金額的解析式;
(2)求日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數,且f(x﹣
)=f(x+
)恒成立,當x∈[2,3]時,f(x)=x,則當x∈(﹣2,0)時,函數f(x)的解析式為( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx+ax2
(1)討論f(x)的單調性;
(2)設a>1,若對任意x1 , x2∈(0,+∞),恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com