【題目】已知一個袋子里有形狀一樣僅顏色不同的6個小球,其中白球2個,黑球4個
現從中隨機取球,每次只取一球.
若每次取球后都放回袋中,求事件“連續取球四次,至少取得兩次白球”的概率;
若每次取球后都不放回袋中,且規定取完所有白球或取球次數達到五次就終止游戲,記游戲結束時一共取球X次,求隨機變量X的分布列與期望.
【答案】(1)
;
(2)隨機變量X的分布列為:
X | 2 | 3 | 4 | 5 |
P |
|
|
|
|
隨機變量X的期望為:
.
【解析】
試題(1)可從正面計算取得兩次、三次、四次白球的概率和,也可以用1減去取得一次、兩次白球的概率,而四次取球中每次是否取得白球相互獨立,只需用組合數即可得到相應概率;(2)注意取出的球不放回,因此最多取5次白球就會被取完,故X=2,3,4,5,分別計算對應的概率,寫出分布列,進而可求出期望.
試題解析:(1)記隨機變量ξ表示連續取球四次,取得白球的次數,則ξ~B(4,
)
則P(ξ>2)=1-P(ξ=0)-P(ξ=1)
=1-![]()
(2)隨機變量X的取值分別為2,3,4,5
∴P(X=2)=![]()
P(X=3)=![]()
P(X=4)=![]()
P(X=5)=![]()
∴隨機變量X的分布列為
X | 2 | 3 | 4 | 5 |
P |
|
|
|
|
∴隨機變量X的期望為:EX=![]()
科目:高中數學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫院抄錄了
至
月份每月
號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:
日期 |
|
|
|
|
|
|
晝夜溫差 |
|
|
|
|
|
|
就診人數 |
|
|
|
| 16 |
|
該興趣小組確定的研究方案是:先從這六組數據中選取
組,用剩下的
組數據求線性回歸方程,再用被選取的
組數據進行檢驗.
(1)求選取的2組數據恰好是相鄰兩個月的概率;
(2)若選取的是
月與
月的兩組數據,請根據
至
月份的數據,求出
關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過
人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司培訓員工某項技能,培訓有如下兩種方式:
方式一:周一到周五每天培訓1小時,周日測試
方式二:周六一天培訓4小時,周日測試
公司有多個班組,每個班組60人,現任選兩組
記為甲組、乙組
先培訓;甲組選方式一,乙組選方式二,并記錄每周培訓后測試達標的人數如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進行培訓,分別估計員工受訓的平均時間
精確到
,并據此判斷哪種培訓方式效率更高?
在甲乙兩組中,從第三周培訓后達標的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A,B分別為雙曲線
(a>0,b>0)的左、右頂點,雙曲線的實軸長為4
,焦點到漸近線的距離為
.
(1)求雙曲線的方程;
(2)已知直線y=
x-2與雙曲線的右支交于M,N兩點,且在雙曲線的右支上存在點D,使
,求t的值及點D的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校的1000名高三學生參加四門學科的選拔考試,每門試卷共有10道題,每題10分,規定:每門錯
題成績記為
,錯
題成績記為
,錯
題成績記為
,錯
題成績記為
,在錄取時,
記為90分,
記為80分,
記為60分,
記為50分.
根據模擬成績,每一門都有如下統計表:
答錯 題數 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
頻數 | 10 | 90 | 100 | 150 | 150 | 200 | 100 | 100 | 50 | 49 | 1 |
已知選拔性考試成績與模擬成績基本吻合.
(1)設
為高三學生一門學科的得分,求
的分布列和數學期望;
(2)預測考生4門總分為320概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com