設點P是曲線C:
上的動點,點P到點(0,1)的距離和它到
焦點F的距離之和的最小值為![]()
(1)求曲線C的方程
(2)若點P的橫坐標為1,過P作斜率為
的直線交C與另一點Q,交x軸于點M,
過點Q且與PQ垂直的直線與C交于另一點N,問是否存在實數k,使得直線MN與曲線C
相切?若存在,求出k的值,若不存在,說明理由。
科目:高中數學 來源: 題型:解答題
已知橢圓的兩個焦點
,
,過
且與坐標軸不平行的直線
與橢圓交于
兩點,如果
的周長等于8。
(1)求橢圓的方程;
(2)若過點
的直線
與橢圓交于不同兩點
,試問在
軸上是否存在定點
,使
恒為定值?若存在,求出點
的坐標及定值;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設
、
分別為橢圓
的左、右兩個焦點.
(Ⅰ) 若橢圓C上的點
到
、
兩點的距離之和等于4, 寫出橢圓C的方程和離心率.;
(Ⅱ) 若M、N是橢圓C上關于原點對稱的兩點,點P是橢圓上除M、N外的任意一點, 當直線PM、PN的斜率都存在, 并記為
、
時, 求證:
·
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
O
中,直線
與拋物線
=2
相交于A、B兩點。
(1)求證:命題“如果直線
過點T(3,0),那么
=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓C:
過點
, 且離心率
.![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ)過右焦點
的動直線交橢圓于點
,設橢圓的左頂點為
連接
且交動直線
于
,若以MN為直徑的圓恒過右焦點F,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,如圖,已知橢圓C:
的上、下頂點分別為A、B,點P在橢圓C上且異于點A、B,直線AP、PB與直線l:y=-2分別交于點M、N.![]()
(1)設直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;
(2)求線段MN長的最小值;
(3)當點P運動時,以MN為直徑的圓是否經過某定點?請證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
經過點
其離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設直線
與橢圓
相交于A、B兩點,以線段
為鄰邊作平行四邊形OAPB,其中頂點P在橢圓
上,
為坐標原點.求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com