【題目】已知函數(shù)
, 則: (1)曲線
的斜率為
的切線方程為__________;
(2)設
,記
在區(qū)間
上的最大值為
.當
最小時,
的值為__________.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點
![]()
(1)求證:平面PAB⊥平面CDE;
(2)若AD=CD=2,求點P到平面ADE的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關命題的說法正確的是( )
A.若“
”為假命題,則“
”為假命題
B.“
”是“
”的必要不充分條件
C.命題“若
,則
”的逆否命題為真命題
D.命題“
,
”的否定是“
,
”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于集合
,定義函數(shù)
對于兩個集合
,定義集合
. 已知
,
.
(Ⅰ)寫出
和
的值,并用列舉法寫出集合
;
(Ⅱ)用
表示有限集合
所含元素的個數(shù),求
的最小值;
(Ⅲ)有多少個集合對
,滿足
,且
?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2ccosB=2a+b.
(1)求角C的大小;
(2)若△ABC的面積等于
,求ab的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為菱形,
,
,平面
平面
,
為等邊三角形,
為
的中點.
![]()
(1)求證:平面
平面
;
(2)若
是
的中點,求證:
平面
,并求四面體
的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式|x+1|>|2﹣x|+1的解集為M,且a,b,c∈M.
(1)比較|a﹣b|與|1﹣ab|的大小,并說明理由;
(2)若
,求a2+b2+c2的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】分形幾何學是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學.分形的外表結構極為復雜,但其內部卻是有規(guī)律可尋的.一個數(shù)學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段
的長度為
,在線段
上取兩個點
,
,使得
,以
為一邊在線段
的上方做一個正六邊形,然后去掉線段
,得到圖2中的圖形;對圖2中的最上方的線段
作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
![]()
記第
個圖形(圖1為第1個圖形)中的所有線段長的和為
,則(1)
______;(2)如果對
,
恒成立,那么線段
的長度
的取值范圍是_______.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com