【題目】如圖,在矩形
中,將
沿
翻折至
,設(shè)直線
與直線
所成角為α,直線
與平面
所成角為β,二面角
的平面角為γ,當(dāng)γ為銳角時( )
![]()
A.
B.
C.
D.![]()
【答案】D
【解析】
根據(jù)幾何體的對稱性將二面角
的平面角等價于二面角
的平面角, 直線
與直線
所成角等價于直線
與直線
所成角;過點(diǎn)
做垂線,分別找到
,根據(jù)直角三角形中邊的大小關(guān)系,結(jié)合利用其正弦余弦值,即可比較其大小.
根據(jù)幾何體的對稱性知道二面角
的平面角等于二面角
的平面角.
作
平面
于點(diǎn)
,則
.
作
于點(diǎn)
,連接
.
由于
,則
平面
.
故
,則
即為二面角
的平面角,
即
.
由于
平面
,則
即為直線
與平面
所成角.
即
.
由于
,則
,
而
,
,則
,
又因為
為銳角,即
.
由于四邊形
為矩形,則![]()
![]()
,
故直線
與直線
所成角等于直線
與直線
等于所成角,
即
.
作
于點(diǎn)
,連接
,則
,而
,
則四邊形
為矩形,則
.
在
中,
; 在
中,
.
而
,則
,
又因
為銳角,所以
.
故
.
![]()
故選:D.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形
是菱形,
,
為
的中點(diǎn),
平面
,
.
![]()
(1)求證:平面
平面
;
(2)若
,
,且
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在貫徹中共中央國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位定點(diǎn)幫扶甲、乙兩個村各50戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo)
和
,制成下圖,其中“
”表示甲村貧困戶,“
”表示乙村貧困戶.
![]()
若
,則認(rèn)定該戶為“絕對貧困戶”,若
,則認(rèn)定該戶為“相對貧困戶”,若
,則認(rèn)定該戶為“低收入戶”;
若
,則認(rèn)定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.
(1)從甲村50戶中隨機(jī)選出一戶,求該戶為“今年不能脫貧的絕對貧困戶”的概率;
(2)若從所有“今年不能脫貧的非絕對貧困戶”中選3戶,用
表示所選3戶中乙村的戶數(shù),求
的分布列和數(shù)學(xué)期望
;
(3)試比較這100戶中,甲、乙兩村指標(biāo)
的方差的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2012年12月18日,作為全國首批開展空氣質(zhì)量新標(biāo)準(zhǔn)監(jiān)測的74個城市之一,鄭州市正式發(fā)布
數(shù)據(jù).資料表明,近幾年來,鄭州市霧霾治理取得了很大成效,空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設(shè)有9個監(jiān)測站點(diǎn)監(jiān)測空氣質(zhì)量指數(shù)(
),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2,5,2個監(jiān)測站點(diǎn),以9個站點(diǎn)測得的
的平均值為依據(jù),播報我市的空氣質(zhì)量.
(Ⅰ)若某日播報的
為118,已知輕度污染區(qū)
的平均值為74,中度污染區(qū)
的平均值為114,求重度污染區(qū)
的平均值;
(Ⅱ)如圖是2018年11月的30天中
的分布,11月份僅有一天
在
內(nèi).
組數(shù) | 分組 | 天數(shù) |
第一組 |
| 3 |
第二組 |
| 4 |
第三組 |
| 4 |
第四組 |
| 6 |
第五組 |
| 5 |
第六組 |
| 4 |
第七組 |
| 3 |
第八組 |
| 1 |
①鄭州市某中學(xué)利用每周日的時間進(jìn)行社會實踐活動,以公布的
為標(biāo)準(zhǔn),如果
小于180,則去進(jìn)行社會實踐活動.以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校周日進(jìn)行社會實踐活動的概率;
②在“創(chuàng)建文明城市”活動中,驗收小組把鄭州市的空氣質(zhì)量作為一個評價指標(biāo),從當(dāng)月的空氣質(zhì)量監(jiān)測數(shù)據(jù)中抽取3天的數(shù)據(jù)進(jìn)行評價,設(shè)抽取到
不小于180的天數(shù)為
,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,
平面
,
為棱
上的一點(diǎn),且
平面
.
![]()
(1)證明:
;
(2)設(shè)
.
與平面
所成的角為
.求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)國家環(huán)保部新修訂的《 環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)
的年平均濃度不得超過
微克/立方米,
的
小時平均濃度不得超過
微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)
年
天
的
小時平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下表:
組別 |
| 頻數(shù)(天) | 頻率 |
第一組 |
|
|
|
第二組 |
|
|
|
第三組 |
|
|
|
第四組 |
|
|
|
(1)這
天的測量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖.
![]()
①求圖中
的值;
②求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從
的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由;
(2)將頻率視為概率,對于
年的某
天,記這
天中該居民區(qū)
的
小時平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明家的晚報在下午
任何一個時間隨機(jī)地被送到,他們一家人在下午
任何一個時間隨機(jī)地開始晚餐.為了計算晚報在晚餐開始之前被送到的概率,某小組借助隨機(jī)數(shù)表的模擬方法來計算概率,他們的具體做法是將每個1分鐘的時間段看作個體進(jìn)行編號,
編號為01,
編號為02,依此類推,
編號為90.在隨機(jī)數(shù)表中每次選取一個四位數(shù),前兩位表示晚報時間,后兩位表示晚餐時間,如果讀取的四位數(shù)表示的晚報晚餐時間有一個不符合實際意義,視為這次讀取的無效數(shù)據(jù)(例如下表中的第一個四位數(shù)7840中的78不符合晚報時間).按照從左向右,讀完第一行,再從左向右讀第二行的順序,讀完下表,用頻率估計晚報在晚餐開始之前被送到的概率為
![]()
7840 1160 5054 3139 8082 7732 5034 3682 4829 4052 |
4201 6277 5678 5188 6854 0200 8650 7584 0136 7655 |
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠DAB=60°,AD⊥PD,點(diǎn)F為棱PD的中點(diǎn).
![]()
(1)在棱BC上是否存在一點(diǎn)E,使得CF∥平面PAE,并說明理由;
(2)若AC⊥PB,二面角D﹣FC﹣B的余弦值為
時,求直線AF與平面BCF所成的角的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com