【題目】已知函數
, ![]()
(1)若
的一個極值點到直線
的距離為1,求
的值;
(2)求方程
的根的個數
【答案】(1)a=-2或a=-8.(2)見解析
【解析】試題分析:(1)先求出函數
的導函數
,令
,可得函數只有一個極值點,根據點到直線的距離公式可得結果;(2)
根的個數等價于
的零點個數,利用導數研究函數的單調性,可得結果.
試題解析:(1)由f′(x)=
=0,得x=0,
故f(x)僅有一個極小值點M(0,0),
根據題意得:
d=
=1.
∴a=-2或a=-8.
(2)令h(x)=f(x)-g(x)=ln(x2+1)-
-a,
h′(x)=
+
=2x
.
當x∈(0,1)∪(1,+∞)時,h′(x)≥0,
當x∈(-∞,-1)∪(-1,0)時,h′(x)<0.
因此,h(x)在(-∞,-1),(-1,0)上時,h(x)單調遞減,
在(0,1),(1,+∞)上時,h(x)單調遞增.
又h(x)為偶函數,當x∈(-1,1)時,h(x)的極小值為h(0)=1-a.
當x→-1-時,h(x)→-∞,當x→-1+時,h(x)→+∞,
當x→-∞時,h(x)→+∞,當x→+∞時,h(x)→+∞.
由根的存在性定理知,方程在(-∞,-1)和(1,+∞)一定有根
故f(x)=g(x)的根的情況為:
當1-a>0時,即a<1時,原方程有2個根;
當1-a=0時,即a=1時,原方程有3個根.
當1-a<0時,即a>1時,原方程有4個根.
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,以
為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓
的標準方程;
(2)已知點
,和平面內一點
,過點
任作直線
與橢圓
相交于
兩點,設直線
的斜率分別為
,
,試求
滿足的關系式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場進行有獎促銷活動,顧客購物每滿500元,可選擇返回50元現金或參加一次抽獎,抽獎規則如下:從1個裝有6個白球、4個紅球的箱子中任摸一球,摸到紅球就可獲得100元現金獎勵,假設顧客抽獎的結果相互獨立.
(Ⅰ)若顧客選擇參加一次抽獎,求他獲得100元現金獎勵的概率;
(Ⅱ)某顧客已購物1500元,作為商場經理,是希望顧客直接選擇返回150元現金,還是選擇參加3次抽獎?說明理由;
(Ⅲ)若顧客參加10次抽獎,則最有可能獲得多少現金獎勵?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商店為了更好地規劃某種商品進貨的量,該商店從某一年的銷售數據中,隨機抽取了
組數據作為研究對象,如下圖所示(
(噸)為該商品進貨量,
(天)為銷售天數):
![]()
(Ⅰ)根據上表數據在下列網格中繪制散點圖:
(Ⅱ)根據上表提供的數據,求出
關于
的線性回歸方程
;
(Ⅲ)根據(Ⅱ)中的計算結果,若該商店準備一次性進貨該商品
噸,預測需要銷售天數;
參考公式和數據: ![]()
![]()
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com