【題目】某公司計劃在辦公大廳建一面長為
米的玻璃幕墻.先等距安裝
根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規格的玻璃.一根立柱的造價為6400元,一塊長為
米的玻璃造價為
元.假設所有立柱的粗細都忽略不計,且不考慮其他因素,記總造價為
元(總造價=立柱造價+玻璃造價).
(1)求
關于
的函數關系式;
(2)當
時,怎樣設計能使總造價最低?
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系
中,以
為極點,
軸的正半軸為極軸建立極坐標系.若直線
的極坐標方程為
,曲線
的極坐標方程為
,將曲線
上所有點的橫坐標縮短為原來的一半,縱坐標不變,然后再向右平移一個單位得到曲線
.
(Ⅰ)求曲線
的直角坐標方程;
(Ⅱ)已知直線
與曲線
交于
兩點,點
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列
和等比數列
滿足
,
,
.
(1)求
的通項公式;
(2)求和:
.
【答案】(1)
;(2)
.
【解析】試題分析:(1)根據等差數列
的
,
,列出關于首項
、公差
的方程組,解方程組可得
與
的值,從而可得數列
的通項公式;(2)利用已知條件根據題意列出關于首項
,公比
的方程組,解得
、
的值,求出數列
的通項公式,然后利用等比數列求和公式求解即可.
試題解析:(1)設等差數列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設等比數列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以
.
從而
.
【題型】解答題
【結束】
18
【題目】已知命題
:實數
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若
,且
為真,求實數
的取值范圍;
(2)若
是
的充分不必要條件,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為保障公平性,高考時每個考點都要安裝手機屏蔽儀,要求在考點周圍1千米處不能收到手機信號,如圖,檢查員抽查某市一考點
,以考點
正西
千米的
處開始為檢查起點,沿著一條北偏東
方向的公路
,以每小時12千米的速度行駛,并用手機接通電話,問從起點開始計時,最長經過多少分鐘檢查員開始收不到信號(
點開始),并至少持續多長時間(
之間)該考點才算檢查合格?
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】要得到函數
的圖象, 只需將函數
的圖象( )
A. 所有點的橫坐標伸長到原來的2倍(縱坐標不變), 再將所得的圖像向左平移
個單位.
B. 所有點的橫坐標伸長到原來的2倍(縱坐標不變), 再將所得的圖像向左平移
個單位.
C. 所有點的橫坐標縮短到原來的
倍(縱坐標不變), 再將所得的圖像向左平移
個單位.
D. 所有點的橫坐標縮短到原來的
倍(縱坐標不變), 再將所得的圖像向左平移
個單位.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系
中,直線
的參數方程為
(其中t為參數),在以原點O為極點,以
軸為極軸的極坐標系中,曲線C的極坐標方程為
.
(1)求直線
的普通方程及曲線
的直角坐標方程;
(2)設
是曲線
上的一動點,
的中點為
,求點
到直線
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在
上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱函數
是
上的有界函數,其中
稱為函數的上界.已知函數
.
(1)當
時,求函數
在
上的值域,并判斷函數
在
上是否為有界函數,請說明理由;
(2)若函數
在
上是以
為上界的有界函數,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com