【題目】已知函數(shù)f(x)=2cos2ωx+
sin2ωx(ω>0)的最小正周期為π,給出下列四個(gè)命題:
①f(x)的最大值為3;
②將f(x)的圖象向左平移
后所得的函數(shù)是偶函數(shù);
③f(x)在區(qū)間[﹣
,
]上單調(diào)遞增;
④f(x)的圖象關(guān)于直線x=
對(duì)稱.
其中正確說法的序號(hào)是( )
A.②③
B.①④
C.①②④
D.①③④
【答案】D
【解析】解:f(x)=2cos2ωx+
sin2ωx(ω>0),
=1+cos2ωx+
sin2ωx,
=2sin(2ωx+
)+1,
f(x)的最小正周期為π,根據(jù)周期公式可知:ω=1,
∴f(x)=2sin(2x+
)+1,
由正弦函數(shù)性質(zhì)可知,f(x)的最大值為3,故①正確;
將f(x)的圖象向左平移
后所得的函數(shù)為f(x)=2sin(2x+
)+1,不是偶函數(shù),故②錯(cuò)誤;
令2kπ﹣
≤2x+
≤2kπ+
,解得:kπ﹣
≤x≤kπ+
,
∴x∈[kπ﹣
,kπ+
],f(x)單調(diào)遞增,
∴f(x)在區(qū)間[﹣
,
]上單調(diào)遞增,
故③正確;
令2x+
=kπ+
,解得x=
+
,f(x)的圖象關(guān)于直線x=
對(duì)稱,故④正確;
故答案選:D.
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移
個(gè)單位長度,得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的
倍(縱坐標(biāo)不變),得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的
倍(橫坐標(biāo)不變),得到函數(shù)
的圖象才能正確解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知橢圓
的右頂點(diǎn)與上頂點(diǎn)分別為
,橢圓的離心率為
,且過點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,若直線
與該橢圓交于
兩點(diǎn),直線
的斜率互為相反數(shù).
①求證:直線
的斜率為定值;
②若點(diǎn)
在第一象限,設(shè)
與
的面積分別為
,求
的最大值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點(diǎn),且在y軸上截得的線段長為4
,半徑小于5.
(Ⅰ)求直線PQ與圓C的方程;
(Ⅱ)若直線l∥PQ,直線l與圓C交于點(diǎn)A,B且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平行四邊形ABCD中,AB=2AD,∠DAB=60°,M是BC的中點(diǎn).將△ADM沿DM折起,使面ADM⊥面MBCD,N是CD的中點(diǎn),圖2所示. ![]()
(Ⅰ)求證:CM⊥平面ADM;
(Ⅱ)若P是棱AB上的動(dòng)點(diǎn),當(dāng)
為何值時(shí),二面角P﹣MC﹣B的大小為60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在約束條件
下,當(dāng)t≥0時(shí),其所表示的平面區(qū)域的面積為S(t),S(t)與t之間的函數(shù)關(guān)系用下列圖象表示,正確的應(yīng)該是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取
名學(xué)生作為樣本,得到這
名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
![]()
(1)求出表中
及圖中
的值;
(2)若該校高一學(xué)生有800人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間
內(nèi)的人數(shù).
【答案】(1)
,
,
;(2)
人.
【解析】試題分析:(1)由題意,
內(nèi)的頻數(shù)是10,頻率是0.25知,
,所以
,則
,
.(2)高一學(xué)生有800人,分組
內(nèi)的頻率是
,人數(shù)為
人.
試題解析:
(1)由
內(nèi)的頻數(shù)是10,頻率是0.25知,
,所以
.
因?yàn)轭l數(shù)之和為40,所以
,
.
.
因?yàn)?/span>
是對(duì)應(yīng)分組
的頻率與組距的商,所以
.
(2)因?yàn)樵撔8咭粚W(xué)生有800人,分組
內(nèi)的頻率是
,
所以估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在此區(qū)間內(nèi)的人數(shù)為
人.
【題型】解答題
【結(jié)束】
18
【題目】已知直線
經(jīng)過拋物線
的焦點(diǎn)
,且與
交于
兩點(diǎn).
(1)設(shè)
為
上一動(dòng)點(diǎn),
到直線
的距離為
,點(diǎn)
,求
的最小值;
(2)求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司引進(jìn)一條價(jià)值30萬元的產(chǎn)品生產(chǎn)線,經(jīng)過預(yù)測(cè)和計(jì)算,得到生產(chǎn)成本降低
萬元與技術(shù)改造投入
萬元之間滿足:①
與
和
的乘積成正比;②當(dāng)
時(shí),
,并且技術(shù)改造投入比率
,
為常數(shù)且
.
(1)求
的解析式及其定義域;
(2)求
的最大值及相應(yīng)的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于實(shí)數(shù)x,符號(hào)[x]表示不超過x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],則下列命題中正確的是
①函數(shù)f(x)的最大值為1; ②函數(shù)f(x)的最小值為0;
③方程
有無數(shù)個(gè)根; ④函數(shù)f(x)是增函數(shù).
A. ②③ B. ①②③ C. ② D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,且anan+1=2n , n∈N* , 則數(shù)列{an}的通項(xiàng)公式為( )
A.an=(
)n﹣1
B.an=(
)n
C.an= ![]()
D.an= ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com