【題目】在直角坐標系xOy中,設傾斜角為α的直線L:
(T為參數(shù))與曲線C:
(φ為參數(shù))相交于不同的兩點A,B.
(1)若α=
,若以坐標原點為極點,x軸的正半軸為極軸,求直線AB的極坐標方程;
(2)若直線的斜率為
,點P(2,
),求|PA||PB|的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
是定義在
上的偶函數(shù),且當
時,
.
![]()
(1)已畫出函數(shù)
在
軸左側的圖像,如圖所示,請補出完整函數(shù)
的圖像,并根據(jù)圖像寫出函數(shù)
的增區(qū)間;
⑵寫出函數(shù)
的解析式和值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax+bx(其中a,b為常數(shù),a>0且a≠1,b>0且b≠1)的圖象經過點A(1,6),
.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若a>b,函數(shù)
,求函數(shù)g(x)在[-1,2]上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合U=R,集合A={x|x2-(a-2)x-2a≥0},B={x|1≤x≤2}.
(1)當a=1時,求A∩B;
(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形
中,
,
,
,直角梯形
通過直角梯形
以直線
為軸旋轉得到,且使得平面
平面
.
為線段
的中點,
為線段
上的動點.
![]()
(
)求證:
.
(
)當點
滿足
時,求證:直線
平面
.
(
)當點
是線段
中點時,求直線
和平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)=x3cos3(x+
),下列說法正確的是( )
A.f(x)是奇函數(shù)且在(﹣
,
)上遞增
B.f(x)是奇函數(shù)且在(﹣
,
)上遞減
C.f(x)是偶函數(shù)且在(0,
)上遞增
D.f(x)是偶函數(shù)且在(0,
)上遞減
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,點
是曲線
上的動點,
到點
的距離與
到直線
的距離相等.
(Ⅰ)求曲線
的方程;
(Ⅱ)設
是曲線
上的點,點
在曲線
上,直線
分別與
軸交于點
,且
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在(0,+∞)的函數(shù)f(x)滿足如下三個條件:
①對于任意正實數(shù)a、b,都有f(ab)=f(a)+f(b)-1;
②f(2)=0;
③x>1時,總有f(x)<1.
(1)求f(1)及
的值;
(2)求證:函數(shù)f(x)在(0,+∞)上是減函數(shù);
(3)如果存在正數(shù)k,使關于x的方程f(kx)+f(2-x)=-1有解,求正實數(shù)k的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com