設定函數
(
>0),且方程
的兩個根分別為1,4。
(Ⅰ)當
=3且曲線
過原點時,求
的解析式;
(Ⅱ)若
在
無極值點,求a的取值范圍。
科目:高中數學 來源: 題型:解答題
已知函數
,
,
.![]()
(1)若
在
存在極值,求
的取值范圍;
(2)若
,問是否存在與曲線
和
都相切的直線?若存在,判斷有幾條?并求出公切線方程,若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
.
(1)若p=2,求曲線
處的切線方程;
(2)若函數在其定義域內是增函數,求正實數p的取值范圍;
(3)設函數
,若在[1,e]上至少存在一點
,使得
成立,求實數p的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
函數
;![]()
(1)若
在
處取極值,求
的值;
(2)設直線
和
將平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四個區域(不包括邊界),若
圖象恰好位于其中一個區域,試判斷其所在區域并求出相應的
的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
,其中
為自然對數的底數.
(Ⅰ)當
時,求曲線
在
處的切線與坐標軸圍成的三角形的面積;
(Ⅱ)若函數
存在一個極大值和一個極小值,且極大值與極小值的積為
,求
的
值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
若存在實常數
和
,使得函數
和
對其定義域上的任意實數
分別滿足:
和
,則稱直線
為
和
的“隔離直線”.已知
,
為自然對數的底數).
(1)求
的極值;
(2)函數
和
是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com