【題目】如圖1,在等腰
中,
,
,
分別為
,
的中點(diǎn),
為
的中點(diǎn),
在線段
上,且
。將
沿
折起,使點(diǎn)
到
的位置(如圖2所示),且
。
![]()
(1)證明:
平面
;
(2)求平面
與平面
所成銳二面角的余弦值
【答案】(1)證明見解析
(2)![]()
【解析】
(1)要證明線面平行,需證明線線平行,取
的中點(diǎn)
,連接
,根據(jù)條件證明
,即
;
(2)以
為原點(diǎn),
所在直線為
軸,過
作平行于
的直線為
軸,
所在直線為
軸,建立空間直角坐標(biāo)系
,求兩個平面的法向量,利用法向量求二面角的余弦值.
(1)證明:取
的中點(diǎn)
,連接
.
∵
,∴
為
的中點(diǎn).
又
為
的中點(diǎn),∴
.
依題意可知
,則四邊形
為平行四邊形,
∴
,從而
.
又
平面
,
平面
,
∴
平面
.
(2)
,且
,
平面
,
平面
,
,
,且
,
平面
,
以
為原點(diǎn),
所在直線為
軸,過
作平行于
的直線為
軸,
所在直線為
軸,建立空間直角坐標(biāo)系
,不妨設(shè)
,
則
,
,
,
,
,
,
,
,
.
設(shè)平面
的法向量為
,
則
,即
,
令
,得
.
設(shè)平面
的法向量為
,
則
,即
,
令
,得
.
從而
,
故平面
與平面
所成銳二面角的余弦值為
.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如下表:
AQI指數(shù)值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
下圖是某市10月1日—20日AQI指數(shù)變化趨勢:
![]()
下列敘述錯誤的是
A. 這20天中AQI指數(shù)值的中位數(shù)略高于100
B. 這20天中的中度污染及以上的天數(shù)占![]()
C. 該市10月的前半個月的空氣質(zhì)量越來越好
D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)
,設(shè)函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時,若對任意的
,均有
,求
的取值范圍.
注:
為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系
,極坐標(biāo)系中
,弧
所在圓的圓心分別為
,曲線
是弧
,曲線
是弧
,曲線
是弧
,曲線
是弧
.
![]()
(1)分別寫出
的極坐標(biāo)方程;
(2)直線
的參數(shù)方程為
(
為參數(shù)),點(diǎn)
的直角坐標(biāo)為
,若直線
與曲線
有兩個不同交點(diǎn)
,求實(shí)數(shù)
的取值范圍,并求出
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
底面
,底面
是直角梯形,
,
,
,點(diǎn)
在
上,且
.
![]()
(1)點(diǎn)
在
上,
,求證:
平面
;
(2)若直線
與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)關(guān)于
的不等式
的解集為
,求
的值;
(2)若函數(shù)
的圖象與
軸圍成圖形的面積不小于50,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司訂購了一批樹苗,為了檢測這批樹苗是否合格,從中隨機(jī)抽測
株樹苗的高度,經(jīng)數(shù)據(jù)處理得到如圖1所示的頻率分布直方圖,其中最高的
株樹苗的高度的莖葉圖如圖2所示,以這
株樹苗的高度的頻率估計(jì)整批樹苗高度的概率.
![]()
(1)求這批樹苗的高度于
米的概率,并求圖
中
的值;
(2)若從這批樹苗中隨機(jī)選取
株,記
為高度在
的樹苗數(shù)量,求
的分布列和數(shù)學(xué)期望;
(3)若變量
滿足
且
,則稱變量
滿足近似于正態(tài)分布
的概率分布,如果這批樹苗的高度近似于正態(tài)分布
的概率分布,則認(rèn)為這批樹苗是合格的,將順利被簽收,否則,公司將拒絕簽收.試問:該批樹苗是否被簽收?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,(
,
,
為常數(shù),
為自然對數(shù)的底數(shù)).
(1)當(dāng)
時,討論函數(shù)
在區(qū)間
上極值點(diǎn)的個數(shù);
(2)當(dāng)
,
時,對任意的
都有
成立,求正實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護(hù)知識,某校開展了“疫情防護(hù)”網(wǎng)絡(luò)知識競賽活動.現(xiàn)從參加該活動的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(滿分為100分)分為6組:
,得到如圖所示的頻率分布直方圖.
![]()
(1)求
的值,并估計(jì)這100名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(2)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | 40 | ||
女生 | 50 | ||
合計(jì) | 100 |
參考公式及數(shù)據(jù):
.
| 0.05 | 0.01 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com