【題目】如圖,某城市有一塊半徑為40m的半圓形綠化區(qū)域(以O為圓心,AB為直徑),現(xiàn)對其進行改建,在AB的延長線上取點D,OD=80m,在半圓上選定一點C,改建后綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為Scm2 . 設∠AOC=xrad. ![]()
(1)寫出S關于x的函數(shù)關系式S(x),并指出x的取值范圍;
(2)試問∠AOC多大時,改建后的綠化區(qū)域面積S取得最大值.
科目:高中數(shù)學 來源: 題型:
【題目】設{an}是公差為d的等差數(shù)列,{bn}是公比為q(q≠1)的等比數(shù)列.記cn=bn﹣an .
(1)求證:數(shù)列{cn+1﹣cn+d}為等比數(shù)列;
(2)已知數(shù)列{cn}的前4項分別為9,17,30,53.
①求數(shù)列{an}和{bn}的通項公式;
②是否存在元素均為正整數(shù)的集合A={n1 , n2 , …,nk},(k≥4,k∈N*),使得數(shù)列cn1 , cn2 , …,cnk等差數(shù)列?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項和,a1=1,2Sn=(n+1)an , 若關于正整數(shù)n的不等式an2﹣tan≤2t2的解集中的整數(shù)解有兩個,則正實數(shù)T的取值范圍為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下列命題:
①設
為直線,
為平面,且
,則“
”是“
”的充要條件;
②若
是
的充分不必要條件,則
是
的必要不充分條件;;
③已知
,
為兩個命題,若“
”為假命題,則“
為真命題”
④若不等式
恒成立,則
的取值范圍是
;
⑤若命題
有
,則
有
;
其中真命題的序號是____________(寫出全部真命題的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當促銷費用為
萬元時,銷售量
萬件滿足
(其中
,
為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品
萬件還需投入成本
萬元(不含促銷費用),產(chǎn)品的銷售價格定為
萬元/萬件.
(1)將該產(chǎn)品的利潤
萬元表示為促銷費用
萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系
中,橢圓
的焦距為2,且過點
.
(1)求橢圓
的方程;
(2)若點
分別是橢圓
的左右頂點,直線
經(jīng)過點
且垂直與軸,點
是橢圓上異于
的任意一點,直線
交
于點
.
①設直線
的斜率為
,直線
的斜率為
,求證:
為定值;
②設過點
垂直于
的直線為
,求證:直線
過定點,并求出定點的坐標.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.a∈R,“
<1”是“a>1”的必要不充分條件
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命題p:“?x∈R,sinx+cosx≤
”,則¬p是真命題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com