已知橢圓
的離心率
,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線
與橢圓相交于不同的兩點(diǎn)
,已知點(diǎn)
的坐標(biāo)為
,點(diǎn)
在線段
的垂直平分線上,且
,求
的值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•浙江)已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過F作直線交拋物線于A、B兩點(diǎn).若直線OA、OB分別交直線l:y=x﹣2于M、N兩點(diǎn),求|MN|的最小值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,如圖,已知橢圓E:
的左、右頂點(diǎn)分別為
、
,上、下頂點(diǎn)分別為
、
.設(shè)直線
的傾斜角的正弦值為
,圓
與以線段
為直徑的圓關(guān)于直線
對(duì)稱.![]()
(1)求橢圓E的離心率;
(2)判斷直線
與圓
的位置關(guān)系,并說明理由;
(3)若圓
的面積為
,求圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率
,且直線
是拋物線
的一條切線.
(1)求橢圓的方程;
(2)點(diǎn)P
為橢圓上一點(diǎn),直線
,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;
(3)過橢圓上一點(diǎn)P作橢圓的切線交直線
于點(diǎn)A,試判斷線段AP為直徑的圓是否恒過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知雙曲線
的左、右頂點(diǎn)分別為A1、A2,動(dòng)直線l:y=kx+m與圓
相切,且與雙曲線左、右兩支的交點(diǎn)分別為
.![]()
(1)求k的取值范圍,并求
的最小值;
(2)記直線
的斜率為
,直線
的斜率為
,那么
是定值嗎?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
的右焦點(diǎn)為![]()
,短軸的端點(diǎn)分別為
,且
.
(1)求橢圓
的方程;
(2)過點(diǎn)
且斜率為![]()
的直線
交橢圓于
兩點(diǎn),弦
的垂直平分線與
軸相交于點(diǎn)
.設(shè)弦
的中點(diǎn)為
,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的準(zhǔn)線與x軸交于點(diǎn)M,過點(diǎn)M作圓
的兩條切線,切點(diǎn)為A、B,
.
(1)求拋物線E的方程;
(2)過拋物線E上的點(diǎn)N作圓C的兩條切線,切點(diǎn)分別為P、Q,若P,Q,O(O為原點(diǎn))三點(diǎn)共線,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
的左、右焦點(diǎn)分別為
,離心率
,連接橢圓的四個(gè)頂點(diǎn)所得四邊形的面積為
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)
是直線
上的不同兩點(diǎn),若
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知點(diǎn)
和
,圓
是以
為圓心,半徑為
的圓,點(diǎn)
是圓
上任意一點(diǎn),線段
的垂直平分線
和半徑
所在的直線交于點(diǎn)
.
(1)當(dāng)點(diǎn)
在圓上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡方程
;
(2)已知
,
是曲線
上的兩點(diǎn),若曲線
上存在點(diǎn)
,滿足
(
為坐標(biāo)原點(diǎn)),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com