【題目】已知
是同一平面內的三個向量,下列命題中正確的是( )
A.![]()
B.若
且
,則![]()
C.兩個非零向量
,
,若
,則
與
共線且反向
D.已知
,
,且
與
的夾角為銳角,則實數(shù)
的取值范圍是![]()
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C:
的離心率為
,右準線方程為
.
求橢圓C的標準方程;
已知斜率存在且不為0的直線l與橢圓C交于A,B兩點,且點A在第三象限內
為橢圓C的上頂點,記直線MA,MB的斜率分別為
,
.
若直線l經(jīng)過原點,且
,求點A的坐標;
若直線l過點
,試探究
是否為定值?若是,請求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓C與y軸相切于點T(0,2),與x軸的正半軸交于兩點
(點
在點
的左側),且
.
(1)求圓C的方程;(2)過點
任作一直線與圓O:
相交于
兩點,連接
,求證:
定值.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側棱B1B上,且
,
.
![]()
求證:(1)直線DE
平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,曲線
由上半橢圓
:
(
,
)和部分拋物線
:
(
)連接而成,
與
的公共點為
,
,其中
的離心率為
.
![]()
(1)求
,
的值;
(2)過點
的直線
與
,
分別交于點
,
(均異于點
,
),是否存在直線
,使得以
為直徑的圓恰好過
點,若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列
是首項為1的等差數(shù)列,數(shù)列
滿足
,且
.
(1)求數(shù)列
的通項公式;
(2)令
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,曲線
的參數(shù)方程為
(
為參數(shù)),將曲線
上各點的橫坐標都縮短為原來的
倍,縱坐標坐標都伸長為原來的
倍,得到曲線
,在極坐標系(與直角坐標系
取相同的單位長度,且以原點
為極點,以
軸非負半軸為極軸)中,直線
的極坐標方程為
.
(1)求直線
和曲線
的直角坐標方程;
(2)設點
是曲線
上的一個動點,求它到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)![]()
為偶函數(shù),且函數(shù)
的圖象的兩相鄰對稱軸間的距離為
.
(1)求
的值;
(2)將函數(shù)
的圖象向右平移
個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)
的圖象,求函數(shù)
的單調遞減區(qū)間.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com