【題目】已知曲線C上的動(dòng)點(diǎn)P(
)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為![]()
(1)求曲線C的方程。
(2)過點(diǎn)M(1,2)的直線
與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線
的方程。
【答案】(1)
(或
);(2)
或
.
【解析】
試題分析:(1)根據(jù)動(dòng)點(diǎn)P(x,y)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比
,建立方程,化簡可得曲線C的方程.
(2)分類討論,設(shè)出直線方程,求出圓心到直線的距離,利用勾股定理,即可求得直線l的方程.
試題解析:(1)由題意得|PA|=
|PB| 2分;
故
3分;
化簡得:
(或
)即為所求。 5分;
(2)當(dāng)直線
的斜率不存在時(shí),直線
的方程為
,
將
代入方程
得
,
所以|MN|=4,滿足題意。 8分;
當(dāng)直線
的斜率存在時(shí),設(shè)直線
的方程為
+2
由圓心到直線的距離
10分;
解得
,此時(shí)直線
的方程為![]()
綜上所述,滿足題意的直線
的方程為:
或
。 12分.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓
,
為拋物線
上的動(dòng)點(diǎn),過點(diǎn)
作圓
的兩條切線與
軸交于
.
![]()
(1)若
,求過點(diǎn)
的圓的切線方程;
(2)若
,求△
面積
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記Sn為等比數(shù)列{an}的前n項(xiàng)和.已知S2=2,S3=﹣6.(12分)
(1)求{an}的通項(xiàng)公式;
(2)求Sn , 并判斷Sn+1 , Sn , Sn+2是否能成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線
:
,點(diǎn)
為
的左焦點(diǎn),點(diǎn)
為
上位于第一象限內(nèi)的點(diǎn),
關(guān)于原點(diǎn)
的對稱點(diǎn)為
,
,
,則
的離心率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓
的離心率為
,過橢圓右焦點(diǎn)
作兩條互相垂直的弦
與
.當(dāng)直線
斜率為0時(shí),
.
![]()
(1)求橢圓的方程;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C:
+y2=1上,過M做x軸的垂線,垂足為N,點(diǎn)P滿足
=
.
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)點(diǎn)Q在直線x=﹣3上,且
=1.證明:過點(diǎn)P且垂直于OQ的直線l過C的左焦點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣
﹣1,g(x)=x+2x , h(x)=x+lnx,零點(diǎn)分別為x1 , x2 , x3 , 則( )
A.x1<x2<x3
B.x2<x1<x3
C.x3<x1<x2
D.x2<x3<x1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,點(diǎn)M,N分別為線段A1B,B1C的中點(diǎn).
![]()
(1)求證:MN∥平面AA1C1C;
(2)若∠ABC=90°,AB=BC=2,AA1=3,求點(diǎn)B1到面A1BC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=e2x﹣1(x2+ax﹣2a2+1).(a∈R)
(1)若a=1,求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com