【題目】已知直線x=
與直線x=
是函數(shù)
的圖象的兩條相鄰的對(duì)稱軸.
(1)求ω,φ的值;
(2)若
,f(α)=﹣
,求sinα的值.
【答案】
(1)解:因?yàn)橹本
、
是函數(shù)f(x)=sin(ωx+φ)圖象的兩條相鄰的對(duì)稱軸,
所以,函數(shù)的最小正周期T=2×
=2π,從而
,
因?yàn)楹瘮?shù)f(x)關(guān)于直線
對(duì)稱.
所以
,即
.
又因?yàn)?
,
所以
.
(2)解:由(1),得
.由題意,
.
由
,得
.
從而
.
,
=
.
【解析】(1)由題意及正弦函數(shù)的圖象和性質(zhì)可求函數(shù)的最小正周期T,由周期公式可求ω,由函數(shù)f(x)關(guān)于直線
對(duì)稱,可得
,結(jié)合范圍
,即可解得φ的值.(2)由(1)得
,由
,得
.可求
,利用兩角差的正弦函數(shù)公式即可求值得解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移
個(gè)單位長(zhǎng)度,得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的
倍(縱坐標(biāo)不變),得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的
倍(橫坐標(biāo)不變),得到函數(shù)
的圖象,以及對(duì)三角函數(shù)的最值的理解,了解函數(shù)
,當(dāng)
時(shí),取得最小值為
;當(dāng)
時(shí),取得最大值為
,則
,
,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤
),其圖象與直線y=﹣1相鄰兩個(gè)交點(diǎn)的距離為π.若f(x)>1對(duì)任意x∈(﹣
,
)恒成立,則φ的取值范圍是( )
A.[
,
]
B.[
,
]
C.[
,
]
D.(
,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱
中,
,
,點(diǎn)
在線段
上.
![]()
(1)若
是
中點(diǎn),證明:
平面
;
(2)當(dāng)
時(shí),求直線
與平面
所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生對(duì)消防知識(shí)的了解情況,從高一年級(jí)和高二年級(jí)各選取100名同學(xué)進(jìn)行消防知識(shí)競(jìng)賽.下圖(1)和下圖(2)分別是對(duì)高一年級(jí)和高二年級(jí)參加競(jìng)賽的學(xué)生成績(jī)按
,
,
,
分組,得到的頻率分布直方圖.
![]()
(1)請(qǐng)計(jì)算高一年級(jí)和高二年級(jí)成績(jī)小于60分的人數(shù);
(2)完成下面
列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級(jí)與消防常識(shí)的了解存在相關(guān)性”?
![]()
附:臨界值表及參考公式:
,
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=k(x﹣m)與拋物線y2=2px(p>0)交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),OA⊥OB,OD⊥AB于D,點(diǎn)D在曲線x2+y2﹣4x=0上,則p= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)f(x)的對(duì)稱軸是x=-1,f(x)在R上的最小值是0,且f(1)=4.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=(λ-1)f(x-1)-λx-3在x∈[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
存在兩個(gè)極值點(diǎn)
且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
cos(2x-
).
(1)利用“五點(diǎn)法”,完成以下表格,并畫出函數(shù)f(x)在一個(gè)周期上的圖象;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間和對(duì)稱中心的坐標(biāo);
(3)如何由y=cosx的圖象變換得到f(x)的圖象.
2x- | 0 |
| π |
| 2π |
x | |||||
f(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=sin(ωx+
)向右平移
個(gè)單位后,所得的圖象與原函數(shù)圖象關(guān)于x軸對(duì)稱,則ω的最小正值為( )
A.1
B.2
C.![]()
D.3
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com