已知圓
的圓心在點
, 點
,求;
(1)過點
的圓的切線方程;
(2)
點是坐標原點,連結(jié)
,
,求
的面積
.
(1)
或
;(2)
.
解析試題分析:(1)過圓外一點作圓的切線,一定是有兩條切線,而求切線方程我們一般是用點斜式寫出直線方程,再利用圓心到切線的距離等于圓的半徑列出方程求出切線斜率
,這時可能會出現(xiàn)只有一解的情形,事實上這種情況的出現(xiàn),一般是另一條切線斜率不存在,即切線與
軸垂直,不有忘記.(2)已知三角形三個頂點坐標,要求三角形的面積,可以采取直接的一邊長如
,再求出AC邊長的高即點O到直線AC的距離在
在,即能求出面積.當然也可用圖形的切割來求面積,計算如下:
.請讀者體會一下,為什么可以這么做?
試題解析:(1)
(1分)
當切線的斜率不存在時,對于直線
到直線的距離為1,滿足條件(3分)
當
存在時,設(shè)直線
,即
,![]()
得
(5分)
∴得直線方程
或
(6分)
(2)
(7分)
(8分)
(10分)
(12分)
考點:(1)圓的切線;(2)三角形的面積.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓
的左右頂點分別為
,離心率
.過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且
.
(1)求橢圓的方程;
(2)求動點C的軌跡E的方程;
(3)設(shè)直線AC(C點不同于A,B)與直線
交于點R,D為線段RB的中點,試判斷直線CD與曲線E的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
經(jīng)過
,
兩點,且在兩坐標軸上的四個截距之和為2.
(1)求圓
的方程;
(2)若
為圓內(nèi)一點,求經(jīng)過點
被圓
截得的弦長最短時的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
問在圓C上是否存在兩點A,B關(guān)于直線
對稱,且以AB為直徑的圓經(jīng)過原點?若存在,寫出直線AB的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系
中,點
,直線
。設(shè)圓
的半徑為
,圓心在
上。![]()
(1)若圓心
也在直線
上,過點
作圓
的切線,求切線的方程;
(2)若圓
上存在點
,使
,求圓心
的橫坐標
的取值范圍。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,銳角
的內(nèi)心為
,過點
作直線
的垂線,垂足為
,點
為內(nèi)切圓
與邊
的切點.![]()
(Ⅰ)求證:
四點共圓;
(Ⅱ)若
,求
的度數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
關(guān)于直線
對稱,圓心
在第二象限,半徑為
.
(1)求圓
的方程;
(2)是否存在直線
與圓
相切,且在
軸、
軸上的截距相等?若存在,求直線的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓O1與圓O2的半徑都是1,
,過動點P分別作圓O1.圓O2的切線PM、PN(M.N分別為切點),使得
試建立適當?shù)淖鴺讼担⑶髣狱cP的軌跡方程![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com