【題目】已知函數
.
(1)討論函數
的單調性;
(2)當
時,對于任意正實數
,不等式
恒成立,試判斷實數
的大小關系.
科目:高中數學 來源: 題型:
【題目】按照我國《機動車交通事故責任強制保險條例》規定,交強險是車主必須為機動車購買的險種,若普通7座以下私家車投保交強險第一年的費用(基準保費)統一為
元,在下一年續保時,實行的是保費浮動機制,保費與上一、二、三個年度車輛發生道路交通事故的情況相關聯,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
投保類型 | 浮動因素 | 浮動比率 |
| 上一個年度未發生有責任道路交通事故 | 下浮10% |
| 上兩個年度未發生有責任道路交通事故 | 下浮20% |
| 上三個及以上年度未發生有責任道路交通事故 | 下浮30% |
| 上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% |
| 上一個年度發生兩次及兩次以上有責任不涉及死亡的道路交通事故 | 上浮10% |
| 上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了研究某一品牌普通7座以下私家車的投保情況,隨機抽取了80輛車齡已滿三年的該品牌同型號私家車在下一年續保時的情況,統計得到了下面的表格:
類型 |
|
|
|
|
|
|
數量 | 20 | 10 | 10 | 20 | 15 | 5 |
(1)根據上述樣本數據,估計一輛普通7座以下私家車(車齡已滿3年)在下一年續保時,保費高于基準保費的概率;
(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基準保費的車輛記為事故車.
①若該銷售商部門店內現有6輛該品牌二手車(車齡已滿3年),其中兩輛事故車,四輛非事故車.某顧客在店內隨機挑選兩輛車,求這兩輛車中恰好有一輛事故車的概率;
②以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率.該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,若購進一輛事故車虧損4000元,一輛非事故車盈利8000元.試估計這批二手車一輛車獲得利潤的平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】北京101中學校園內有一個“少年湖”,湖的兩側有一個音樂教室和一個圖書館,如圖,若設音樂教室在A處,圖書館在B處,為測量A,B兩地之間的距離,某同學選定了與A,B不共線的C處,構成△ABC,以下是測量的數據的不同方案:①測量∠A,AC,BC;②測量∠A,∠B,BC;③測量∠C,AC,BC;④測量∠A,∠C,∠B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號是_______.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設三個數
成等差數列,記
對應點的曲線是
.
(1)求曲線
的方程;
(2)已知點
,點
,點
,過點
任作直線
與曲線
相交于
兩點,設直線
的斜率分別為
,若
,求
滿足的關系式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成
兩組,每組100只,其中
組小鼠給服甲離子溶液,
組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據試驗數據分別得到如下直方圖:
![]()
記
為事件:“乙離子殘留在體內的百分比不低于
”,根據直方圖得到
的估計值為
.
(1)求乙離子殘留百分比直方圖中
的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數據用該組區間的中點值為代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規定:機動車行經人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監控設備所抓拍的5個月內駕駛員不“禮讓斑馬線”行為統計數據:
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數 | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數據求違章人數y與月份之間的回歸直線方程
+![]()
(2)預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數;
(3)交警從這5個月內通過該路口的駕駛員中隨機抽查了50人,調查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下2
列聯表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計 | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
能否據此判斷有97.5
的把握認為“禮讓斑馬線”行為與駕齡有關?
參考公式及數據:
,
.
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】命題p:
x∈R,ax2﹣2ax+1>0,命題q:指數函數f(x)=ax(a>0且a≠1)為減函數,則P是q的( )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com