【題目】已知數列
的前
項和為
,數列
的前
項和為
,滿足
,
,
,且
.若存在
,使得
成立,則實數
的最小值為__________.
【答案】![]()
【解析】
先根據數列的遞推公式可求出
,再利用累乘法求出通項公式,再構造數列Bn=T2n﹣Tn,判斷數列的單調性,即可求出
∵3Sn=(n+m)an,
∴3S1=3a1=(1+m)a1,解得m=2,
∴3Sn=(n+2)an,①,
當n≥2時,3Sn﹣1=(n+1)an﹣1,②,
由①﹣②可得3an=(n+2)an﹣(n+1)an﹣1,
即(n﹣1)an=(n+1)an﹣1,
∴
,
∴
,
,
,…,
,
,
累乘可得an=n(n+1),
經檢驗a1=2符合題意,
∴an=n(n+1),n∈N*,
∵anbn=n,
∴bn
,
令Bn=T2n﹣Tn
,
則Bn+1﹣Bn
0,
∴數列{Bn}為遞增數列,
∴Bn≥B1
,
∵存在n∈N*,使得λ+Tn≥T2n成立,
∴λ≥B1
,
故實數λ的最小值為
,
故答案為:
.
科目:高中數學 來源: 題型:
【題目】從某居民區隨機抽取10個家庭,獲得第
個家庭的月收入
(單位:千元)與月儲蓄
(單位:千元)的數據資料,算得
,
,
,
.
(1)求家庭的月儲蓄
對月收入
的線性回歸方程
;
(2)若該居民區某家庭月收入為7千元,預測該家庭的月儲蓄.
(附:線性回歸方程
中,
,其中
,
為樣本平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】趙爽是我國古代數學家、天文學家,大約在公元222年,趙爽為《周髀算經》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽炫圖”(以弦為邊長得到的正方形組成).類比“趙爽弦圖”,可類似地構造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設
,若在大等邊三角形中隨機取一點,則此點取自小等邊三角形的概率是__________.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“龜兔賽跑”講述了這樣的故事:領先的兔子看著緩緩爬行的烏龜,驕傲起來,睡了一覺.當它醒來時,發現烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到了終點.用
和
分別表示烏龜和兔子經過時間t所行的路程,則下列圖象中與故事情節相吻合的是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年8月8日是我國第十個全民健身日,其主題是:新時代全民健身動起來。某市為了解全民健身情況,隨機從某小區居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。
![]()
(1)試求這40人年齡的平均數、中位數的估計值;
(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈送健身卡,求這2人中至少有1人年齡不低于60歲的概率;
(ⅱ)已知該小區年齡在[10,80]內的總人數為2000,若18歲以上(含18歲)為成年人,試估計該小區年齡不超過80歲的成年人人數。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=log2(kx2+4kx+3).①若f(x)的定義域為R,則k的取值范圍是_____;②若f(x)的值域為R,則k的取值范圍是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com