【題目】已知橢圓
:
的右焦點(diǎn)為
,右頂點(diǎn)為
,設(shè)離心率為
,且滿足
,其中
為坐標(biāo)原點(diǎn).
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)(0,1)的直線
與橢圓交于
,
兩點(diǎn),求
面積的最大值.
【答案】(1)
;(2)
.
【解析】
(1)設(shè)橢圓的焦半距為c,結(jié)合題意分析可得
,結(jié)合橢圓的幾何性質(zhì)可得a、b的值,代入橢圓的方程即可得答案;
(2)由題意分析可得直線l與x軸不垂直,設(shè)其方程為y=kx+1,聯(lián)立l與橢圓C的方程,可得(4k2+3)x2+8kx﹣8=0,結(jié)合根與系數(shù)的關(guān)系可以用k表示|MN|與O到l的距離,由三角形面積公式計(jì)算可得△OMN的面積
.,由基本不等式分析可得答案.
(1)設(shè)橢圓的焦半距為
,則
,
,
.
所以
,其中
,又
,聯(lián)立解得
,
.
所以橢圓
的方程是
.
(2)由題意直線不能與
軸垂直,否則將無(wú)法構(gòu)成三角形.
當(dāng)直線
與
軸不垂直時(shí),設(shè)其斜率為
,那么
的方程為
.
聯(lián)立
與橢圓
的方程,消去
,得
.
于是直線與橢圓有兩個(gè)交點(diǎn)的充要條件是
,這顯然成立.
設(shè)點(diǎn)
,
.
由根與系數(shù)的關(guān)系得
,
.
所以
,又
到
的距離
.
所以
的面
.
令
,那么
,當(dāng)且僅當(dāng)
時(shí)取等號(hào).
所以
面積的最大值是
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin
.
(1)求A;
(2)若△ABC的面積S=
c2,求sin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】稱直角坐標(biāo)系中縱橫坐標(biāo)均為整數(shù)的 點(diǎn)為“格點(diǎn)”,稱一格點(diǎn)沿坐標(biāo)線到原點(diǎn)的最短路程為該點(diǎn)到原點(diǎn)的“格點(diǎn)距離”,格點(diǎn)距離為定值的點(diǎn)的軌跡稱為“格點(diǎn)圓”,該定值稱為格點(diǎn)圓的半徑,而每一條最短路程稱為一條半徑.當(dāng)格點(diǎn)半徑為2005時(shí),格點(diǎn)圓的半徑有________條.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)紅直播平臺(tái)為確定下一季度的廣告投入計(jì)劃,收集了近6個(gè)月廣告投入量
(單位:萬(wàn)元)和收益
(單位:萬(wàn)元)的數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
廣告投入量/萬(wàn)元 | 2 | 4 | 6 | 8 | 10 | 12 |
收益/萬(wàn)元 | 14.21 | 20.31 | 31.8 | 31.18 | 37.83 | 44.67 |
用兩種模型①
,②
分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:
|
|
|
|
7 | 30 | 1464.24 | 364 |
![]()
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說(shuō)明理由.
(2)殘差絕對(duì)值大于2的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:
(i)剔除的異常數(shù)據(jù)是哪一組?
(ii)剔除異常數(shù)據(jù)后,求出(1)中所選模型的回歸方程;
(iii)廣告投入量
時(shí),(ii)中所得模型收益的預(yù)報(bào)值是多少?
附:對(duì)于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱
中,
,D為AB上一點(diǎn),且
平面
.
![]()
(1)求證:
;
(2)若四邊形
是矩形,且平面
平面ABC,直線
與平面ABC所成角的正切值等于2,
,
,求三樓柱
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖設(shè)計(jì)一幅矩形宣傳畫(huà),要求畫(huà)面面積為4840
,畫(huà)面上下邊要留8cm空白,左右要留5cm空白,怎樣確定畫(huà)面高與寬的尺寸,才能使宣傳畫(huà)所用紙張面積最小?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求該函數(shù)的值域;
(2)求不等式
的解集;
(3)若
對(duì)于
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】建造一條防洪堤,其斷面為等腰梯形,腰與底邊成角為
,防洪堤高記為
(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其斷面面積為
平方米,為了使堤的上面與兩側(cè)面的水泥用料最省,則斷面的外周長(zhǎng)
(
)要最小.
![]()
(1)用
表示
、
;
(2)將
表示成
的函數(shù)
,如
限制在
范圍內(nèi),
最小為多少米?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的空間幾何體中,平面
平面
,
與
是邊長(zhǎng)為2的等邊三角形,
,BE和平面ABC所成的角為
,且點(diǎn)E在平面ABC上的射影落在
的平分線上.
![]()
(1)求證:
平面ABC;
(2)求二面角
的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com