【題目】函數
,
.(1)討論
的極值點的個數;(2)若對于
,總有
.(i)求實數
的取值范圍;(ii)求證:對于
,不等式
成立.
【答案】(1)當
時,函數
有兩個極值點;當
時,函數
沒有極值點. (2)①
②見解析
【解析】試題分析:(1)先求函數導數,轉化為研究二次函數
實根分布:當
,導函數不變號,無極值;當
,分
時,兩個正根,有兩個極值點;
時,兩個負根,無極值點(2)①不等式恒成立問題利用變量分離轉化為對應函數最值問題:
,再利用導數研究函數
單調性,并得最小值
,即得實數
的取值范圍;②由①轉化證明
,利用導數研究函數
單調性,可得![]()
試題解析: 解:由題意得
,令
,
(1)當
,即
時,
對
恒成立,
即
對
恒成立,此時
沒有極值點;
(2)當
,即
或
,
①
時,設方程
兩個不同實根為
,不妨設
,
則
,
,故
,
或
時,
;在
時
,
故
是函數
的兩個極值點.
②
時,設方程
兩個不同實根為
,
則
,
,故
,
,
時,
;故函數
沒有極值點.
綜上,當
時,函數
有兩個極值點;
當
時,函數
沒有極值點.
(2)①
,
在
單調遞減,在
單調遞增,所以
②
只需證明
易得
在
單調遞減,在
單調遞增,
,得證.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x-3)ex+ax,aR
(1)當a=1時,求曲線f(x)在點(2,f(2))處的切線方程;
(2)當a[0,e)時,設函數f(x)在(1,+)上的最小值為g(a),求函數g(a)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學校本課程開設了A,B,C,D共4門選修課,每個學生必須且只能選修1門選修課,現有該校的甲、乙、丙3名學生.
(1)求這3名學生選修課所有選法的總數;
(2)求恰有2門選修課沒有被這3名學生選擇的概率;
(3)求A選修課被這3名學生選擇的人數ξ的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“中國式過馬路”是網友對部分中國人集體闖紅燈現象的一種調侃,即“湊夠一撮人就可以走了,和紅綠燈無關.”出現這種現象是大家受法不責眾的“從眾”心理影響,從而不顧及交通安全.某校對全校學生過馬路方式進行調查,在所有參與調查的人中,“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”人數如表所示:
跟從別人闖紅燈 | 從不闖紅燈 | 帶頭闖紅燈 | |
男生 | 800 | 450 | 200 |
女生 | 100 | 150 | 300 |
(1)在所有參與調查的人中,用分層抽樣的方法抽取n人,已知“跟從別人闖紅燈”的人中抽取45人,求n的值;
(2)在“帶頭闖紅燈”的人中,將男生的200人編號為1,2,…,200;將女生的300人編號為201,202,…,500,用系統抽樣的方法抽取4人參加“文明交通”宣傳活動,若抽取的第一個人的編號為100,把抽取的4人看成一個總體,從這4人中任選取2人,求這兩人均是女生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個袋子中裝有三個編號分別為1,2,3的紅球和三個編號分別為1,2,3的白球,三個紅球按其編號分別記為a1 , a2 , a3 , 三個白球按其編號分別記為b1 , b2 , b3 , 袋中的6個球除顏色和編號外沒有任何差異,現從袋中一次隨機地取出兩個球,
(1)列舉所有的基本事件,并寫出其個數;
(2)規定取出的紅球按其編號記分,取出的白球按其編號的2倍記分,取出的兩個球的記分之和為一次取球的得分,求一次取球的得分不小于6的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinx﹣cosx+x+1,x∈[0,2π]
(1)求函數f(x)的單調遞減區間;
(2)求函數f(x)的極小值和最大值,并寫明取到極小值和最大值時分別對應x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3﹣3x
(1)討論f(x)的單調區間;
(2)若函數g(x)=f(x)﹣m在[﹣
,3]上有三個零點,求實數m的取值范圍;
(3)設函數h(x)=ex﹣ex+4n2﹣2n(e為自然對數的底數),如果對任意的x1 , x2∈[
,2],都有f(x1)≤h(x2)恒成立,求實數n的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某印刷廠為了研究印刷單冊書籍的成本y(單位:元)與印刷冊數x(單位:千冊)之間的關系,在印制某種書籍時進行了統計,相關數據見下表:
![]()
根據以上數據,技術人員分別借助甲、乙兩種不同的回歸模型,得到了兩個回歸方程,甲:
為了評價兩種模型的擬合效果,完成以下任務:
(1)(ⅰ)完成下表(計算結果精確到0.1):
![]()
(ⅱ)分別計算模型甲與模型乙的殘差平方和
及
,并通過比較
,
的大小,判斷哪個模型擬合效果更好.
(2)該書上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷,根據市場調查,新需求量為8千冊(概率為0.8)或10千冊(概率為0.2),若印刷廠以沒測5元的價格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊恒獲得更多的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com