【題目】已知函數f(x)=x3+3x2-9x .
(I)求f(x)的單調區間;
(Ⅱ)若函數f(x)在區間[-4,c]上的最小值為-5,求c的取值范圍.
【答案】解:(I)f(x)=x3+3x2-9x的定義域是R,且f '(x)=3x2+6x-9 =3(x+3)(x-1)
令f '(x)=0,得x1=-3,x2=1,
f(x)與f '(x)在(-
,+
)上的情況如下:
x | (+ | -3 | (-3,1) | 1 | (1,+ |
f '(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 27 | ↘ | -5 | ↗ |
所以f(x)的單調遞增區間為(-
,-3)和(1,+
);單調遞減區間為(-3,1),
(II)由f(-4)=-64+48+36=20及(I)中結論可知:
當c≥1時,函數f(x)在區間[-4,c]上的最小值為f(1)=1+3-9 =-5;
當-4<c<1時,函數f(x)在區間[-4,c]上的最小值大于-5,不合題意舍,
因此,c的取值范圍是[1,+
).
【解析】(1)求出函數的導函數,解關于導函數的不等式,即可求出函數的單調區間。(2)通過討論c的范圍,求出函數的最值從而求出c的取值范圍。
【考點精析】掌握二次函數在閉區間上的最值和利用導數研究函數的單調性是解答本題的根本,需要知道當
時,當
時,
;當
時在
上遞減,當
時,
;一般的,函數的單調性與其導數的正負有如下關系: 在某個區間
內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點P(0,1)在圓C:x2+y2+2mx﹣2y+m2﹣4m+1=0內,若存在過點P的直線交圓C于A、B兩點,且△PBC的面積是△PAC的面積的2倍,則實數m的取值范圍為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
的一系列對應值如下表:
![]()
(1)根據表格提供的數據求出函數
的一個解析式;
(2)根據(1)的結果,若函數
的周期為
,當
時,方程
恰有兩個不同的解,求實數
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
﹣k(
+lnx),若x=2是函數f(x)的唯一一個極值點,則實數k的取值范圍為( )
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從2017年1月18日開始,支付寶用戶可以通過“
掃‘!帧焙汀皡⑴c螞蟻森林”兩種方式獲得福卡(愛國福、富強福、和諧福、友善福,敬業福),除夕夜
,每一位提前集齊五福的用戶都將獲得一份現金紅包.某髙校一個社團在年后開學后隨機調査了80位該校在讀大學生,就除夕夜
之前是否集齊五福進行了一次調查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數據如下表:
![]()
(1)計算這80位大學生集齊五福的頻率,并據此估算該校10000名在讀大學生中集齊五福的人數;
(2)為了解集齊五福的大學生明年是否愿意繼續參加集五福活動,該大學的學生會從集齊五福的學生中,選取2位男生和3位女生逐個進行采訪,最后再隨機選取3次采訪記錄放到該大學的官方網站上,求最后被選取的3次采訪對象中至少有一位男生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2eax .
(Ⅰ)當a<0時,討論函數f(x)的單調性;
(Ⅱ)在(1)條件下,求函數f(x)在區間[0,1]上的最大值;
(Ⅲ)設函數g(x)=2ex﹣
,求證:當a=1,對x∈(0,1),g(x)﹣xf(x)>2恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD與AB垂直,并與AB相交于點E,點F為弦CD上異于點E的任意一點,連接BF、AF并延長交⊙O于點M、N. ![]()
(1)求證:B、E、F、N四點共圓;
(2)求證:AC2+BFBM=AB2 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com