【題目】保護(hù)環(huán)境,防治環(huán)境污染越來越得到人們的重視,某企業(yè)在現(xiàn)有設(shè)備下每日生產(chǎn)總成本
(單位:萬元)與日產(chǎn)量
(單位:噸)之間的函數(shù)關(guān)系式為
.現(xiàn)為了減少大氣污染,該企業(yè)引進(jìn)了除塵設(shè)備,每噸產(chǎn)品除塵費(fèi)用為
萬元,除塵后,當(dāng)日產(chǎn)量
時(shí),每日生產(chǎn)總成本
.
(1)求
的值;
(2)若每噸產(chǎn)品出廠價(jià)為48萬元,試求除塵后日產(chǎn)量為多少噸時(shí),每噸產(chǎn)品的利潤(rùn)最大,最大利潤(rùn)為多少萬元?
【答案】(1)k=2; (2)日產(chǎn)量為4噸時(shí),每噸產(chǎn)品的利潤(rùn)最大,最大利潤(rùn)為26萬元.
【解析】
(1)求出除塵后的函數(shù)解析式,利用當(dāng)日產(chǎn)量
時(shí),總成本
,代入計(jì)算得
;
(2)求出每噸產(chǎn)品的利潤(rùn),利用基本不等式求解即可.
解:(1)由題意,除塵后
,
將
,
代入得
解得
;
(2)由(1)值
,總利潤(rùn)
,
則每噸產(chǎn)品的利潤(rùn)
,
當(dāng)且僅當(dāng)
,即
時(shí)取等號(hào),
所以除塵后日產(chǎn)量為
噸時(shí),每噸產(chǎn)品的利潤(rùn)最大,最大利潤(rùn)為
萬元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家歐拉在1765年提出:三角形的外心、重心位于同一直線上,這條直線被后人稱之為三角形的歐拉線,若
的頂點(diǎn)
,
,且
的歐拉線的方程為
.
(1)求
外心
(外接圓圓心)的坐標(biāo);
(2)求頂點(diǎn)
的坐標(biāo).
(注:如果
三個(gè)頂點(diǎn)坐標(biāo)分別為
,
,
,則
重心的坐標(biāo)是
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若函數(shù)
在
處的切線與直線
平行,求實(shí)數(shù)
的值;
(2)試討論函數(shù)
在區(qū)間
上最大值;
(3)若
時(shí),函數(shù)
恰有兩個(gè)零點(diǎn)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E是線段AB中點(diǎn).
![]()
(1)證明:D1E⊥CE;
(2)求二面角D1﹣EC﹣D的大小的余弦值;
(3)求A點(diǎn)到平面CD1E的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量
(噸)與相應(yīng)的生產(chǎn)能耗
(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)
|
|
|
|
|
|
|
|
|
|
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
參考公式:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
平面
,
,
,
,
.
為線段
上的點(diǎn).
![]()
(I)證明:
面![]()
(Ⅱ)若
是
的中點(diǎn),求
與平面
所成的角的正弦值;
(Ⅲ)若
滿足
面
,求二面角
正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)若函數(shù)f(x)在
處有極值,求函數(shù)f(x)的最大值;
(2)是否存在實(shí)數(shù)b,使得關(guān)于x的不等式
在
上恒成立?若存在,求出b的取值范圍;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會(huì)為了解同學(xué)對(duì)社團(tuán)活動(dòng)的滿意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調(diào)查的問卷滿意度評(píng)分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再從這5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com