【題目】已知正四棱柱
的底面邊長為2,側棱
,
為上底面
上的動點,給出下列四個結論中正確結論為( )
A.若
,則滿足條件的
點有且只有一個
B.若
,則點
的軌跡是一段圓弧
C.若
∥平面
,則
長的最小值為2
D.若
∥平面
,且
,則平面
截正四棱柱
的外接球所得平面圖形的面積為![]()
科目:高中數學 來源: 題型:
【題目】2013年華人數學家張益唐證明了孿生素數猜想的一個弱化形式。孿生素數猜想是希爾伯特在1900年提出的23個問題之一,可以這樣描述:存在無窮多個素數p,使得p+2是素數,素數對(p,p+2)稱為孿生素數.在不超過30的素數中,隨機選取兩個不同的數,其中能夠組成孿生素數的概率是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,四邊形
為梯形,
,且
,
是邊長為2的正三角形,頂點
在
上的射影為點
,且
,
,
.
![]()
(1)證明:平面
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大以來,某貧困地區扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農村地區人民群眾脫貧奔小康.經過不懈的奮力拼搏,新農村建設取得巨大進步,農民年收入也逐年增加.為了制定提升農民年收入、實現2020年脫貧的工作計劃,該地扶貧辦統計了2019年50位農民的年收入并制成如下頻率分布直方圖:
![]()
(1)根據頻率分布直方圖,估計50位農民的年平均收入
元(單位:千元)(同一組數據用該組數據區間的中點值表示);
(2)由頻率分布直方圖,可以認為該貧困地區農民年收入X服從正態分布
,其中
近似為年平均收入
,
近似為樣本方差
,經計算得
,利用該正態分布,求:
(i)在扶貧攻堅工作中,若使該地區約有占總農民人數的84.14%的農民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?
(ii)為了調研“精準扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了1000位農民.若每位農民的年收入互相獨立,問:這1000位農民中的年收入不少于12.14千元的人數最有可能是多少?
附參考數據:
,若隨機變量X服從正態分布
,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線
(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-2,-1),則雙曲線的焦距為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex-ax-1(e為自然對數的底數),a>0.
(1)若函數f(x)恰有一個零點,證明:aa=ea-1;
(2)若f(x)≥0對任意x∈R恒成立,求實數a的取值集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,圓柱的軸截面
是邊長為2的正方形,點
是圓弧
上的一動點(不與
重合),點
是圓弧
的中點,且點
在平面
的兩側.
![]()
(1)證明:平面
平面
;
(2)設點
在平面
上的射影為點
,點
分別是
和
的重心,當三棱錐
體積最大時,回答下列問題.
(ⅰ)證明:
平面
;
(ⅱ)求平面
與平面
所成二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
在橢圓
上,
為右焦點,
軸,
為橢圓上的四個動點,且
,
交于原點
.
(1)判斷直線
與橢圓的位置關系;
(2設
,
滿足
,判斷
的值是否為定值,若是,請求出此定值,并求出四邊形
面積的最大值,否則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線
的參數方程為
(
為參數),以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸建立極坐標系,橢圓
的極坐標方程為
.
(1)求直線
的普通方程(寫成一般式)和橢圓
的直角坐標方程(寫成標準方程);
(2)若直線
與橢圓
相交于
,
兩點,且與
軸相交于點
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com