【題目】某基建公司年初以100萬元購進一輛挖掘機,以每年22萬元的價格出租給工程隊.基建公司負責挖掘機的維護,第一年維護費為2萬元,隨著機器磨損,以后每年的維護費比上一年多2萬元,同時該機器第x(x∈N* , x≤16)年末可以以(80﹣5x)萬元的價格出售.
(1)寫出基建公司到第x年末所得總利潤y(萬元)關于x(年)的函數解析式,并求其最大值;
(2)為使經濟效益最大化,即年平均利潤最大,基建公司應在第幾年末出售挖掘機?說明理由.
【答案】
(1)解:y=22x+(80﹣5x)﹣100﹣(2+4+…+2x)=﹣20+17x﹣
x(2+2x)
=﹣x2+16x﹣20=﹣(x﹣8)2+44(x≤16,x∈N),
由二次函數的性質可得,當x=8時,ymax=44,
即有總利潤的最大值為44萬元
(2)解:年平均利潤為
=16﹣(x+
),設f(x)=16﹣(x+
),x>0,
由x+
≥2
=4
,當x=2
時,取得等號.
由于x為整數,且4<2
<5,f(4)=16﹣(4+5)=7,f(5)=7,
即有x=4或5時,f(x)取得最大值,且為7萬元.
故使得年平均利潤最大,基建公司應在第4或5年末出售挖掘機
【解析】(1)由題意可得總利潤y等于總收入減去總成本(固定資產加上維護費),結合二次函數的最值求法,即可得到最大值;(2)求得年平均利潤為
,再由基本不等式,結合x為正整數,加上即可得到最大值,及對應的x的值.
科目:高中數學 來源: 題型:
【題目】已知橢圓
的一個焦點為
,其左頂點
在圓
上.
(Ⅰ)求橢圓
的方程;
(Ⅱ)直線
交橢圓
于
兩點,設點
關于
軸的對稱點為
(點
與點
不重合),且直線
與
軸的交于點
,試問
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出y關于x的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,射線y=x(x≥0)和y=0(x≥0)上分別依次有點A1、A2 , …,An , …,和點B1 , B2 , …,Bn…,其中
,
,
.且
,
(n=2,3,4…). ![]()
(1)用n表示|OAn|及點An的坐標;
(2)用n表示|BnBn+1|及點Bn的坐標;
(3)寫出四邊形AnAn+1Bn+1Bn的面積關于n的表達式S(n),并求S(n)的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,
為自然對數的底數.
(I)若曲線
在點
處的切線平行于
軸,求
的值;
(II)求函數
的極值;
(III)當
時,若直線
與曲線
沒有公共點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩隊參加聽歌猜歌名游戲,每隊3人.隨機播放一首歌曲,參賽者開始搶答,每人只有一次搶答機會(每人搶答機會均等),答對者為本隊贏得一分,答錯得零分.假設甲隊中每人答對的概率均為
,乙隊中3人答對的概率分別為
,
,
,且各人回答正確與否相互之間沒有影響.
(Ⅰ)若比賽前隨機從兩隊的6個選手中抽取兩名選手進行示范,求抽到的兩名選手在同一個隊的概率;
(Ⅱ)用ξ表示甲隊的總得分,求隨機變量ξ的分布列和數學期望;
(Ⅲ)求兩隊得分之和大于4的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com