(本小題滿分12分)
設(shè)函數(shù)f (x)=
,其中a∈R.
(1)若a=1,f (x)的定義域?yàn)椋?,3],求f (x)的最大值和最小值.
(2)若函數(shù)f (x)的定義域?yàn)閰^(qū)間(0,+∞),求a的取值范圍使f (x)在定義域內(nèi)是單調(diào)減函數(shù).
(1)f (x)max=
,f (x)min=-1;(2)a<-1。
【解析】
試題分析:f (x)=
=
=a-
,
設(shè)x1,x2∈R,則f
(x1)-f (x2)=
=
. ……2分
(1)當(dāng)a=1時(shí),設(shè)0≤x1<x2≤3,則f (x1)-f (x2)=
.
又x1-x2<0,x1+1>0,x2+1>0,所以f (x1)-f (x2)<0,
∴f (x1)<f (x2), ……4分
所以f (x)在[0,3]上是增函數(shù),所以f (x)max=f (3)=1-
=
;
f (x)min=f (0)=1-
=-1. ……7分
(2)設(shè)x1>x2>0,則x1-x2>0,x1+1>0,x2+1>0
要f (x)在(0,+∞)上是減函數(shù),只要f (x1)-f (x2)<0
而f (x1)-f (x2)=
,所以當(dāng)a+1<0即a<-1時(shí),有f (x1)-f (x2)<0,所以f (x1)<f (x2),
所以當(dāng)a<-1時(shí),f (x)在定義域(0,+∞)上是單調(diào)減函數(shù). ……12分
考點(diǎn):本題考查函數(shù)的性質(zhì):單調(diào)性;定義域;最值。
點(diǎn)評:對于形如
的函數(shù),我們常采取分離常數(shù)法化為
的形式。而
的圖像可以有反比例函數(shù)的圖像經(jīng)過平移伸縮變換得到。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的
、
、
.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com