設命題p:f(x)=
在區間(1,+∞)上是減函數;命題q:x1,x2是方程x2-ax-2=0的兩個實根,且不等式m2+5m-3≥|x1-x2|對任意的實數a∈[-1,1]恒成立.若p∧q為真,試求實數m的取值范圍.
科目:高中數學 來源: 題型:解答題
修建一個面積為
平方米的矩形場地的圍墻,要求在前面墻的正中間留一個寬度為2米的出入口,后面墻長度不超過20米.已知后面墻的造價為每米45元,其他墻的造價為每米180元,設后面墻長度為
米,修建此矩形場地圍墻的總費用為
元.
(1)求
的表達式;
(2)試確定
,使修建此矩形場地圍墻的總費用最小,并求出最小總費用.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求實數a的取值范圍.
(2)設g(x)為定義在R上的奇函數,且當x<0時,g(x)=f(x),求g(x)的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某商場對A品牌的商品進行了市場調查,預計2012年從1月起前x個月顧客對A品牌的商品的需求總量P(x)件與月份x的近似關系是:
P(x)=
x(x+1)(41-2x)(x≤12且x∈N*)
(1)寫出第x月的需求量f(x)的表達式;
(2)若第x月的銷售量g(x)=![]()
(單位:件),每件利潤q(x)元與月份x的近似關系為:q(x)=
,問:該商場銷售A品牌商品,預計第幾月的月利潤達到最大值?月利潤最大值是多少?(e6≈403)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某家具廠生產一種兒童用組合床柜的固定成本為20000元,每生產一組該組合床柜需要增加投入100元,已知總收益滿足函數:
,其中
是組合床柜的月產量.
(1)將利潤
元表示為月產量
組的函數;
(2)當月產量為何值時,該廠所獲得利潤最大?最大利潤是多少?(總收益=總成本+利潤).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)時下,網校教學越越受到廣大學生的喜愛,它已經成為學生們課外學習的一種趨勢,假設某網校的套題每日的銷售量
(單位:千套)與銷售價格
(單位:元/套)滿足的關系式
,其中
,
為常數.已知銷售價格為4元/套時,每日可售出套題21千套.
(1)求
的值;
(2)假設網校的員工工資、辦公等所有開銷折合為每套題2元(只考慮銷售出的套數),試確定銷售價格
的值,使網校每日銷售套題所獲得的利潤最大.(保留1位小數)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com